Epitaxial Growth of β-FeSi₂ on Single Crystal Insulator

Kensuke Akiyama¹, Satoru Kaneko¹ and Hiroshi Funakubo²

¹Kanagawa Industrial Technology Research Institute, 705-1 Shimoimaizumi, Ebina-city, Kanagawa 243-0435, Japan

Tel: +81-462-36-1500. Fax: +81-462-36-1525, e-mail: akiyama@kanagawa-iri.go.jp

²Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 228-8505, Japan

1. Introduction

 β -FeSi₂ thin film is able to epitaxially grow on Si substrate [1], and has large hall mobility of 400 cm²/Vs [2]. It has ability to control the electrical conduction type by doping transitional-metal, such as Mn and Co It is expected that the electrical conductive [3]. property could apply for electronic device. However, fabrication of epitaxial β -FeSi₂ thin film was reported only on Si substrate. If the growth technique of epitaxial β -FeSi₂ thin film would be established on various substrates such as insulator, larger ability to the fabrication and application of this material extends to various devices such as FET.

In this paper, we report on succeeding of epitaxial β-FeSi₂ film growth on insulator.

2. Experiments

Iron silicide films were prepared on MgO(001), MgAl₂O₄(001), SrTiO₃(001), (Y_{0.1}Zr_{0.9})O₂(001) and Al₂O₃(001) substrates at 735°C by RF magnetron sputtering method under Ar atmosphere. These oxides were reported to be epitaxially grown on Si(001) substrate [4]. The chamber pressure and deposition rate of the films were $3x10^{-1}$ Pa and 0.8 nm/min, respectively. Both of X-ray fluoroecence (XRF) and Rutherford backscattering spectroscopy (RBS) were employed to measure the Si/Fe atomic ratio of the films, and it was verified to be 2. Crystallographic structure of the films was characterized by X-ray diffraction (XRD, Philips MRD) using CuK_{α} radiation, and the pole figure measurement was used to determinate the epitaxial relationship between the film and substrate.

3. Results and Discussion

Figure 1 shows XRD patterns of the films deposited on (a) MgO(001), (b) MgAl₂O₄(001), (c) SrTiO₃(001), (d) $(Y_{0.1}Zr_{0.9})O_2(001)$ and (e) Al₂O₃(001) substrates. As a reference, the pattern of the epitaxail β -FeSi₂ film on Si(001) substrate is showed in Figure 1(f). On MgO(001) and SrTiO₃(001) substrates, the films were consisted of amorphous, and polycrystalline β -FeSi₂ phase was formed on MgAl₂O₄(001) substrate. On the other hand, β -FeSi₂ phase having (100)-preferred orientation was formed on (Y_{0.1}Zr_{0.9})O₂ and Al₂O₃(001) substrates as shown in Fig. 1(d) and (e). These $(100)\beta$ -FeSi₂ films were verified to be epitaxially grown from XRD pole figure measurement. The threefold symmetry of epitaxial β-FeSi2 variants was observed on Al₂O₃(001) substrates, while the twofold symmetry which is the same as the epitaxial film on Si(001)substrate was observed on $(Y_{0.1}Zr_{0.9})O_2(001)$ substrate.

Lattice matching is important factor for hetero epitaxial growth of the film. Figure 2 shows the relationship between lattice mismatch along b- and c-axes of β -FeSi₂ on each substrate. As a result, compressive lattice strain was preferred to (100) oriented epitaxial growth. However, on Al₂O₃(001) substrate, epitaxial growth of (100)β-FeSi2 film was observed in spite of large lattice strain of even 12%. This fact suggests that epitaxial growth of β -FeSi₂ film is affected by not only lattice matching but also by other factors such as arrangement of anion and cation.

4. Conclusions

We succeeded in preparation of epitaxial β -FeSi₂ film

on insulator. This result suggested larger ability to the fabrication and application of this film to various devices such as FET.

Acknowledgement

We would like to thank Dr. K. Saito (Brucker Japan Ltd.) for assistance with the XRD measurement.

References

 J. E. Mahan, K. M. Geib, G. Y. Robinson, R. G. Long, Y. Xinghua, G. Bai, M. A. Nicolet and M. Nathan: Appl. Phys. Lett. 56 (1990) 2439.

- [2] K. Takakura, T. Suemasu, N. Hiroi and F. Hasegawa: Jpn J. Appl. Phys. 39 (2000) L233.
- [3] I. Nishida: Phys. Rev. B137 (1973) 2710.
- [4] H. Ishihara and S. Furukawa: OYO BUTURI 61 (1992) 104.
- [5] K. Akiyama, T. Kimura, T. Suemasu, F. Hasegawa, Y. Maeda and H. Funakubo: Jpn. J. Appl. Phys. 43 (2004) L551.

Figure 1. XRD patterns of the films deposited on (a) MgO(001), (b) MgAl₂O₄(001), (c) SrTiO₃(001), (d) $(Y_{0,1}Zr_{0,9})O_2(001)$ and (e) Al₂O₃(001) substrates. These films were prepared by RF magnetron sputtering method. And XRD patterns of epitaxial β -FeSi₂ film on (f) Si(001) substrate [5].

Figure 2. Relationship between lattice mismatch along b- and c-axes of (100)-oriented β -FeSi₂ grown on various substrates.