
Chip Multiprocessor Based on Dual Instruction Multiple Data Architecture

Masahiro Shimura1 and Minoru Fujishima1,2

1School of Engineering, 2School of Frontier Sciences, The University of Tokyo,
5-1-5-703 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

Phone: +81-4-7136-3849 E-mail: info@axcel.k.u-tokyo.ac.jp
1. Introduction

In recent years, a CMP (chip multiprocessor) has been
studied to realize a high-speed parallel operation [1].
However, since the performance of the CMP depends on an
algorithm, it is difficult to achieve an operation speed
proportional to the number of parallel processors in all
cases. On the other hand, an appropriate algorithm realizes
a high-speed operation using parallel processors. For
example, FFT (fast Fourier transformation) is suitable for
parallel processors, and the speed is highly improved by
parallel operation [2]. Moreover, a reconfigurable processor
is another example realizing a high-speed operation for
streaming applications by changing the configuration of the
processors dynamically [3]. Although the hardware is not
realized yet, a quantum computer is believed to solve NP
(nondeterministic polynomial) problems, which require a
long computation time by conventional processors, at a
high speed [4]

To solve NP problems at a high speed, we are studying a
dedicated LSI (large-scale integrated circuit) processor,
without quantum computing. In this paper, we propose
DIMD (dual instruction multiple data) architecture for
on-chip massively parallel processing. In the following
sections, after the proposed processor is explained,
measurement and future prospects are discussed.
2. DIMD Processor
Optimization of Data Flow Processing

An inverse problem is a problem in which an answer is
easy to verify, although obtaining the answer requires a
long computation time. Many inverse problems such as
factorization, SAT (satisfiability) problem, and TSP
(traveling salesperson problem) become NP problems. To
solve an inverse problem, the same function is applied to all
candidates for an answer and the answer is searched from
all the outputs of the function as shown in Fig. 1. As a
result, SIMD (single instruction multiple data) architecture
is basically suitable because multiple data is calculated by a
single instruction. However, since a general algorithm
requires a conditional command generated in a given data
flow, only some of the PEs (processing elements) are in
operation, whereas the other PEs are paused when the
SIMD architecture is adopted. To reduce the number of
paused PEs, we propose the DIMD architecture, which has
two operational codes for true and false instructions at one
operation step, and one of the two codes is selected
depending on the status of flag registers in the processors as
shown in Fig. 2. The block diagram of the PEs used in the
DIMD architecture is shown in Fig. 3. All PEs have a local
memory and five flags which select either true or false
instruction to be operated. They are given different ID
numbers to generate different data from the DIMD
instructions.

A controller manages the order of operations separately
from the PEs using instructions such as branch, arithmetic
and logical instructions. The controller and the PEs operate
in parallel. As a result, a branch operation by the controller

and a DIMD operation by the PEs are issued at the same
time and no additional operation step is required as shown
in Fig. 4. The instruction set is summarized in Table 1.
Every operation is executed with a single clock, which is
similar to a RISC (reduced instruction set computer).
Search

In inverse problems, the answer has to be searched from
the multiple results calculated by the processors based on
the DIMD architecture. To obtain the final answer, shared
registers are utilized among the processors with a
binary-tree connection as shown in Fig. 5. The answers of
inverse problems are obtained at a high speed by collecting
the results calculated by the PE with an ID number of zero.
Since one of the registers in the PE with the ID number of
zero is shared with the controller, the results calculated by
the PE are obtained in the controller. One of the registers in
the controller is also shared with all PEs, and it gives an
immediate number and results calculated by the controller.
3. Measurement and Discussion

The proposed architecture is implemented in an FPGA
(field programmable gate array) with 1.5 million logic gates.
Since a PE has no multiplier or divider to minimize the
number of logic gates, multiplication and division are
realized by executing addition and subtraction operations
sequentially. Consequently, 192 PEs with a binary
connection and one controller are realized. In the
implemented architecture, 7.7 GOPS are achieved at a
clock frequency of 40 MHz. A DIMD chip multiprocessor
factorizes 64-bit numbers with 2.2 billion steps, while
approximately 200 billion steps require by a Pentium4
processor, when a trial division method is adopted. Thus,
the DIMD multiprocessor requires only 1/100 of the
operation steps of the Pentium4 processor. Nevertheless, as
shown in Fig. 6, the operation speed using the proposed
processor is slightly worse than that of the Pentium4
processor with a clock frequency of 3.4 GHz since the
clock frequency of the DIMD multiprocessor is 1/85 of that
of the Pentium4 processor. However, it is noted that 2,048
PEs can be implemented by estimation when the DIMD
multiprocessor is fabricated with a custom design using a
90-nm CMOS process. With a clock frequency of 340 MHz,
which is 1/10 of that of the Pentium4 processor, 700 GOPS
is achieved, which is 80 times faster than that of the newest
Pentium4 processor as shown in Fig. 6.
4. Conclusions

We proposed a DIMD multiprocessor operating massive
parallel PEs on a chip. The DIMD multiprocessor realized a
high-speed parallel operation and a high-speed search
operation in a flexible programming environment. As a
result of the fabrication using the FPGA, the number of
operation steps is reduced up to 1/100 of that of a Pentium4
processor. It is also estimated that custom designing using
90nm CMOS technology will have an operation speed 80
times that of a case using an up-to-date general-purpose
processor.

Extended Abstracts of the 2004 International Conference on Solid State Devices and Materials, Tokyo, 2004,

- 396 -

P1-5

pp. 396-397

References
[1] L. Hammond, B.A. Nayfeb, and K. Olukotun, Computer 30

(1997) 79.
[2] L.H. Soo, H. Mori, and H. Aiso, Trans. of the Institute of

Electronics and Communication Eng. of Jpn. E68 (1985)

284.
[3] K. Bondalapati, V.K. Prasanna, Proceedings of the IEEE 90

(2002) 1201.
[4] M. Fujishima, Fluctuation and Noise Letters 3 (2003) C9.

f (x)000
001
010

…

111

PE PE PE

PE PE PE

PE PE

f (x) f (x)

f (x) f (x) f (x)

f (x) f (x)

Schematic data flow for solving an inverse problem
where an answer is searched from the calculated results.

binary
search

answer

Fig. 1

Local Memory
(16bit ×128 address)

registerflag

Op for True
Op for False

selector

ALU

Schematic block diagram of a PE. The flag
determines either “Op for True” or “Op for False”.

Fig. 3

Performance comparison of the DIMD multiprocessor and
the Pentium4 processor with a clock frequency of 3.4 GHz.

PE000

Some of the PE registers are shared with the binary-
tree connection.

register

Fig. 5

PE001 PE010 PE011 PE100 PE101 PE111

PE000
1st
comparison

PE000 2nd comparison

PE000 3rd comparison

PE000 PE110

PE010 PE100 PE110

PE100

PE001

register

PE010

register

PE010

register

Controller

DIMD operates one of two instructions in all PEs.

Simultaneous operation
by multiple PEs

A = A+1

A= 0?

Instruction A Instruction B

Fig. 2

Branch operation is executed in the background
of PE operations. [01] is the data of memory
address 1.

PE Instruction
Controller
Instruction

MOV #10, r1Step 1

L1: ADD [01], r1, r2 NOPStep 2

SLL r1, r2 NOPStep 3 SLL r1, r2 NOPStep 3

SLL r2, [02] BNZ L1Step 5 SLL r2, [02] BNZ L1Step 5
Fig. 4

ADD r1, r2Step 4 SUB r1, #1, r2ADD r1, r2Step 4 SUB r1, #1, r2

Fig. 6

Table 1. The instruction set for DIMD multiprocessor, where $D
and $S are destination and source operands, respectively.

NOP

ADD $D, $S1, $S2

ADC $D, $S1, $S2

SBB $D, $S1, $S2

SBIB $D, $S1, $S2

AND $D, $S1, $S2

SUB $D, $S1, $S2

XOR $D, $S1, $S2

JMP

BR

PUSH $S1

POP $D

CALL

RET

ST (M), $S1

LD $D, (M)

$D = $S1 + $S2

$D = $S1 + $S2 + C

$D = $S1 - $S2

$D = $S1 - $S2 - C

$D = -$S1 + $S2

$D = -$S1 + $S2 - C

$D = $S1 & $S2

$D = $S1 | $S2
$D = $S1 ^ $S2

$D = $S1

$D = $S1 >> 1

No Operation

Jump to absolute address

Jump to relative address

Push $S1 to stack

Pop stack to $D

Call subroutine

Return from subroutine

$D = (M)

(M) = $S1

SRL $D, $S1

MOV $D, $S1

OR $D, $S1, $S2

SBI $D, $S1, $S2

DIMD(custom)

Pentium4 3.4GHz

DIMD(FPGA)

80

0.96

1

Instructions for a controller

Instructions for PEs

- 397 -

