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1. Introduction 

In recent years, a CMP (chip multiprocessor) has been 
studied to realize a high-speed parallel operation [1]. 
However, since the performance of the CMP depends on an 
algorithm, it is difficult to achieve an operation speed 
proportional to the number of parallel processors in all 
cases. On the other hand, an appropriate algorithm realizes 
a high-speed operation using parallel processors. For 
example, FFT (fast Fourier transformation) is suitable for 
parallel processors, and the speed is highly improved by 
parallel operation [2]. Moreover, a reconfigurable processor 
is another example realizing a high-speed operation for 
streaming applications by changing the configuration of the 
processors dynamically [3]. Although the hardware is not 
realized yet, a quantum computer is believed to solve NP 
(nondeterministic polynomial) problems, which require a 
long computation time by conventional processors, at a 
high speed [4] 

To solve NP problems at a high speed, we are studying a 
dedicated LSI (large-scale integrated circuit) processor, 
without quantum computing. In this paper, we propose 
DIMD (dual instruction multiple data) architecture for 
on-chip massively parallel processing. In the following 
sections, after the proposed processor is explained, 
measurement and future prospects are discussed.  
2. DIMD Processor 
Optimization of Data Flow Processing 

An inverse problem is a problem in which an answer is 
easy to verify, although obtaining the answer requires a 
long computation time. Many inverse problems such as 
factorization, SAT (satisfiability) problem, and TSP 
(traveling salesperson problem) become NP problems. To 
solve an inverse problem, the same function is applied to all 
candidates for an answer and the answer is searched from 
all the outputs of the function as shown in Fig. 1. As a 
result, SIMD (single instruction multiple data) architecture 
is basically suitable because multiple data is calculated by a 
single instruction. However, since a general algorithm 
requires a conditional command generated in a given data 
flow, only some of the PEs (processing elements) are in 
operation, whereas the other PEs are paused when the 
SIMD architecture is adopted. To reduce the number of 
paused PEs, we propose the DIMD architecture, which has 
two operational codes for true and false instructions at one 
operation step, and one of the two codes is selected 
depending on the status of flag registers in the processors as 
shown in Fig. 2. The block diagram of the PEs used in the 
DIMD architecture is shown in Fig. 3. All PEs have a local 
memory and five flags which select either true or false 
instruction to be operated. They are given different ID 
numbers to generate different data from the DIMD 
instructions. 

A controller manages the order of operations separately 
from the PEs using instructions such as branch, arithmetic 
and logical instructions. The controller and the PEs operate 
in parallel. As a result, a branch operation by the controller 

and a DIMD operation by the PEs are issued at the same 
time and no additional operation step is required as shown 
in Fig. 4. The instruction set is summarized in Table 1. 
Every operation is executed with a single clock, which is 
similar to a RISC (reduced instruction set computer). 
Search 

In inverse problems, the answer has to be searched from 
the multiple results calculated by the processors based on 
the DIMD architecture. To obtain the final answer, shared 
registers are utilized among the processors with a 
binary-tree connection as shown in Fig. 5. The answers of 
inverse problems are obtained at a high speed by collecting 
the results calculated by the PE with an ID number of zero. 
Since one of the registers in the PE with the ID number of 
zero is shared with the controller, the results calculated by 
the PE are obtained in the controller. One of the registers in 
the controller is also shared with all PEs, and it gives an 
immediate number and results calculated by the controller.  
3. Measurement and Discussion 

The proposed architecture is implemented in an FPGA 
(field programmable gate array) with 1.5 million logic gates. 
Since a PE has no multiplier or divider to minimize the 
number of logic gates, multiplication and division are 
realized by executing addition and subtraction operations 
sequentially. Consequently, 192 PEs with a binary 
connection and one controller are realized. In the 
implemented architecture, 7.7 GOPS are achieved at a 
clock frequency of 40 MHz. A DIMD chip multiprocessor 
factorizes 64-bit numbers with 2.2 billion steps, while 
approximately 200 billion steps require by a Pentium4 
processor, when a trial division method is adopted. Thus, 
the DIMD multiprocessor requires only 1/100 of the 
operation steps of the Pentium4 processor. Nevertheless, as 
shown in Fig. 6, the operation speed using the proposed 
processor is slightly worse than that of the Pentium4 
processor with a clock frequency of 3.4 GHz since the 
clock frequency of the DIMD multiprocessor is 1/85 of that 
of the Pentium4 processor. However, it is noted that 2,048 
PEs can be implemented by estimation when the DIMD 
multiprocessor is fabricated with a custom design using a 
90-nm CMOS process. With a clock frequency of 340 MHz, 
which is 1/10 of that of the Pentium4 processor, 700 GOPS 
is achieved, which is 80 times faster than that of the newest 
Pentium4 processor as shown in Fig. 6.  
4. Conclusions 

We proposed a DIMD multiprocessor operating massive 
parallel PEs on a chip. The DIMD multiprocessor realized a 
high-speed parallel operation and a high-speed search 
operation in a flexible programming environment. As a 
result of the fabrication using the FPGA, the number of 
operation steps is reduced up to 1/100 of that of a Pentium4 
processor. It is also estimated that custom designing using 
90nm CMOS technology will have an operation speed 80 
times that of a case using an up-to-date general-purpose 
processor.  
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Performance comparison of the DIMD multiprocessor and 
the Pentium4 processor with a clock frequency of 3.4 GHz.
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Branch operation is executed in the background 
of PE operations. [01] is the data of memory 
address 1.

PE Instruction
Controller 
Instruction

MOV  #10, r1Step 1

L1: ADD [01], r1, r2 NOPStep 2

SLL r1, r2 NOPStep 3 SLL r1, r2 NOPStep 3

SLL r2, [02] BNZ L1Step 5 SLL r2, [02] BNZ L1Step 5
Fig. 4

ADD r1, r2Step 4 SUB r1, #1,  r2ADD r1, r2Step 4 SUB r1, #1,  r2

Fig. 6

Table 1. The instruction set for DIMD multiprocessor, where $D 
and $S are destination and source operands, respectively.             

NOP

ADD $D, $S1, $S2

ADC $D, $S1, $S2

SBB $D, $S1, $S2

SBIB $D, $S1, $S2

AND $D, $S1, $S2

SUB $D, $S1, $S2

XOR $D, $S1, $S2

JMP

BR

PUSH $S1

POP $D

CALL

RET

ST (M), $S1

LD $D, (M)

$D = $S1 + $S2

$D = $S1 + $S2 + C

$D = $S1 - $S2

$D = $S1 - $S2 - C

$D = -$S1 + $S2

$D = -$S1 + $S2 - C

$D = $S1 & $S2

$D = $S1 | $S2
$D = $S1 ^ $S2

$D = $S1

$D = $S1 >> 1

No  Operation

Jump to absolute address

Jump to relative address

Push $S1 to stack

Pop stack to $D

Call  subroutine

Return from subroutine

$D = (M)

(M) = $S1

SRL  $D, $S1

MOV $D, $S1

OR   $D, $S1, $S2

SBI $D, $S1, $S2

DIMD(custom)

Pentium4 3.4GHz

DIMD(FPGA)

80

0.96

1

Instructions for a controller

Instructions for PEs
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