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1. Introduction 

As the scaling of CMOS structure reaches its fundamen-
tal limits, the improvement of carrier mobility has been 
intensively studied by introducing strain in the channel re-
gion, such as strained Si on SiGe substrate [1]. However, 
the fabrication of the strained Si devices is more compli-
cated, such as forming a relaxed SiGe buffer layer. Recent 
studies have shown that the uniaxial strained channel from 
a contact etch-stop silicon nitride (SiN) layer affects the 
current drivability [2]. Unfortunately, uniaxial tensile strain 
only improves the electron mobility but degrades the hole 
mobility and the compressive strain is in the opposite direc-
tion. In order not to degrade either of them, Local Me-
chanical-Stress Control (LMC) technique has been demon-
strated [3]. It utilized a SiN capping layer with high me-
chanical stress and selective Ge-ion implantation into the 
SiN layer, can improve the performance of nMOSFETs and 
pMOSFETs simultaneously. However, additional Ge im-
plantation process has to increase one more photo align-
ment in CMOS process. For this reason, the local strained 
channel (LSC) technique is proposed which provides ten-
silely strained channel only in nMOSFETs by forming 
compressively strained poly silicon (poly-Si) gate elec-
trodes [4]. In this study, we proposed a local strained chan-
nel technique that using deposition of SiN layer with high 
mechanical stress on a stacked amorphous silicon (a-Si) 
and poly-Si gate. It was found that the stack of a-Si and 
poly-Si gate could increase tensile strain in the channel 
region compared to that of the single-poly-Si gate structure.  
 
2. Experiments 

The local strain structure with the stack of a-Si and SiN 
capping layer has been fabricated. After RCA cleaning 
process, 2.5nm gate oxide was grown in a vertical furnace 
(800°C, O2 ambient). Then, a-Si (550°C, 20-70 nm) and 
in-situ n+ doped poly-Si (550°C) were deposited in the 
same ambient. The final poly-gate thickness was kept the 
same for all samples. After S/D formation, thermal CVD 
SiN (780°C,) with different thickness, 20-280 nm, was di-
rectly deposited on the transistor and followed by TEOS 
deposition. After contact alignment, TEOS- and SiN-etch 
were carried out in the same system. In order to protect the 
Si surface without etching damage, SiN layer was etched in 
two-step. We calculated the SiN etch rate and left 20nm 
after dry etching. Then, we used the H3PO4 solution to etch 
the residual SiN layer. After these processes, (Ti / TiN / Al / 
TiN) four-level metallization were carried out in PVD sys-
tem for contact. 
 

3. Results and Discussion 
  Figure 1 shows the dependence of output characteristics 
by capping SiN-layer of different thicknesses. The drain 
current of nMOSFETs with 280 nm SiN layer shows 15% 
increase compared to that of conventional devices. The 
transconductance increases with the increase of thickness of 
SiN-layer as shown in Fig. 2. This result implies that the 
increase of electron mobility is the cause of the observed 
enhancement of the drain current. Fig. 3 illustrates the 
measured C-V profile with different thickness of SiN-layer. 
The inversion capacitance and flat band voltage are almost 
the same as that of conventional device. The dependence of 
threshold voltage on different thickness of SiN-layer is 
shown in Fig. 4. The results show that the threshold voltage 
decreases as the thickness of SiN-layer is increased.  

The strain effect of the stack of a-Si and poly-Si gate was 
shown in Fig.5. All samples are capped a 50nm SiN- layer 
for comparison. The drain current is improved 19% for 
70nm a-Si sample compared to that of the stack with 20nm 
one. The transconductance increases as the thickness of 
a-Si layer is increased, as shown in Fig.6. The mechanism 
of the stress elevation could be as follows: before the 
dopant activation process, the entire n+-poly gate is in 
amorphous phase due to the stack of a-Si and high dose 
implantation of arsenic. The re-crystallization of 
amorphous region during rapid thermal annealing leads to 
n+-poly gate expansion, and resulting in residual compres-
sive stress. This compressive stress in n+-poly gate provides 
highly tensile strain to the channel region. The threshold 
voltage is in proportion to thickness of the a-Si layer as 
shown in Fig. 7. This means the strain effect causes the 
improvement of electron mobility is larger than the effect 
of increased the threshold voltage. The pronounced in-
crease of transconductance on stack of 50nm a-Si layer and 
different thickness of SiN-layer is shown in Fig. 8. We 
found that the strain dependence of mobility enhancement 
is significantly enhanced by using both SiN-layer and stack 
a-Si gate structures. 
  In summary, we found that a local strain channel to im-
prove the mobility of nMOSFET can be achieved by using 
a stack-gate poly-Si and capping with a SiN-layer.  
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Fig. 1 Output characteristics for different thickness of SiN capping layer. 

Fig. 2 Transconductance for different thickness of SiN capping layer. 

Fig. 3 Measured C-V for different thickness of SiN capping layer. 

Fig. 4 Threshold voltage for different thickness of SiN capping layer. 

Fig. 5 Output characteristics for different thickness of a-Si stack. 

Fig.6 Transconductance for different thickness of a-Si stack. 

Fig. 7 Threshold voltage for different thickness of a-Si stack. 

Fig. 8 Transconductance for 50nm a-Si layer and different thickness 
of SiN capping layer. 
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