The annealing temperature effects on the synthesis of n-TiO$_2$/dye/p-CuI solid state solar cells

Mohamad Rusop, Tetsuya Shirata, Tetsuo Soga and Takashi Jimbo

Department of Environmental Technology and Urban Planning, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Email: rusop@mail.com

Dye sensitized systems have aroused much attention as a cheap alternative source for regenerative power sources. The dye-sensitization process on wide band gap semiconductors was investigated in the 1960s [1]. The n-TiO$_2$/Dye/p-CuI dye-sensitized solid states solar cells by using cheap materials have been fabricated. The optically transparent and electrically conducting CuI of about 100 nm thickness films have been prepared by pulsed laser deposition using a CuI target. For preparation of the titanium dioxide (TiO$_2$) films, the glacial acetic acid (5.5 ml), 5 ml of tetraisopropyl titanate [(CH$_3$)$_2$CHO]$_4$ (Aldrich) and 1 drop of triton X-100 (Sigma) were mixed with 10 ml of 2 propanol. Water (3 ml) was added to the above solution drop wise while vigorously stirring the solution. Degusa P-25 TiO$_2$ powder (0.65 g, Nihon Aerisol) was added to the above mixture and was kept under vigorous stirring for 2-3 hours. The resulting semi-colloidal suspension was used as the stock solution. A small amount of the stock was spread on preheated (at about 150 ºC) fluorine doped conduction ITO coated glass (1 x 2.5 cm2) by plastic dropper and was allowed to dry for few minutes. TiO$_2$ coated glass plate was fired at annealing temperature from 450 to 800 ºC for 6 hours. The resulting semi-colloidal suspension was used as the stock solution. A small amount of the stock was spread on preheated (at about 150 ºC) fluorine doped conduction ITO coated glass (1 x 2.5 cm2) by plastic dropper and was allowed to dry for few minutes. TiO$_2$ coated glass plate was fired at annealing temperature from 450 to 800 ºC for 6 hours.

Fig. 1 shows the XRD spectra of TiO$_2$ films. Curves a and b illustrate the XRD spectra of TiO$_2$ films prepared at 450 ºC and 800 ºC, respectively. The peak at 25.3º (curve a) corresponds to (101) plane of the anatase phase of TiO$_2$, indicating that the TiO$_2$ film deposited at 450 ºC is composed of anatase structure. This peak is decreased with simultaneous increase in the intensity of new peak at 28.3º for the samples prepared at higher temperature (800 ºC). This new peak corresponds to (110) plane of TiO$_2$. Only the rutile phase (curve b) was observed for the film prepared at 800 ºC, indicating that the TiO$_2$ film is only composed of rutile structure.

![X-ray diffraction](image)

Fig. 1: X-ray diffraction for the (a) TiO$_2$ on glass, prepared at 450 ºC, and (b) TiO$_2$ on silicon, prepared at 800 ºC.

Fig. 2 shows the transmission spectra of TiO$_2$ film prepared at 450 and 800 ºC for 6 hours, respectively. The transmittance spectrum shows the TiO$_2$ film prepared at 450 ºC exhibited optical transmittance over 70% in the wavelength region in range 450 - 900 nm. TiO$_2$ films prepared as described above exhibited high degree of porosity and transparency to visible light. The transmittance spectra for both films (a) 450 ºC and (b) 800 ºC show a sharp decrease in the transmittance at around 390 - 410 nm (3.18 - 3.02 eV) of light wavelength, almost matching with the band edge of anatase (3.15 eV).
eV) and rutile (3.00 eV) phase of TiO$_2$ [2]. The reflectance spectra show an increase in reflectance while the transmittance spectra show a decrease in transmittance with increase of preparation temperature. This decrease in transmittance is considered partly due to higher reflectance and also partly due to higher absorption at higher preparation temperature (800 °C).

A high incident photon to current conversion efficiency (IPCE) was observed under illumination through TiO$_2$ layer compared to that of through CuI layer. Dye molecules exhibited a relay effect under illumination through TiO$_2$ layer at wavelengths shorter than 400 nm. Significantly enhanced photocurrent was observed under illumination. Action spectra of the n-TiO$_2$|Dye|p-CuI cell is shown in Fig. 3. High incident photon to current conversion efficiency over 70% was observed under illumination. In addition to the sensitization process, band gap excitation of TiO$_2$ was observed only under illumination through TiO$_2$ layer, as shown by curve b in figure 3. For comparison, the IPCE action spectrum of TiO$_2$ electrode is shown by curve c in the same figure.

The cells performances have been given in the current-voltage working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm2, 25 °C). The maximum short circuit current density (J_{sc}) of about 12.2 mA/cm2 and open circuit voltage (V_{oc}) of about 480 mV were obtained for the CuI|Dye|TiO$_2$ solid states photovoltaic solar cells with good reproducibility. The fill factor (FF) and power conversion efficiency (η) were about 47.8% and 2.8%, respectively.

Acknowledgments

This work was supported by the Incorporated Administrative Agency New Energy and Industrial Technology Development Organization (NEDO) under Ministry of Economy, Trade and Industry (METI) and 21st century COE program at NIT.

References