Study of the Novel Polymer COC Waveguide Film

Shug-June Hwang¹* and Hsin Her Yu ²

¹ Department of Electro-Optical Engineering, National United University
No. 1, Lien-Da, Miao-Li, 360, Taiwan
phone: 886-37-381730, Fax: 886-37-351575, e-mail : june@nuu.edu.tw

² Graduate Institute of Electro-Optical and Materials Science
National Huwei University of Science & Technology

Abstract
The novel polymer COC waveguide film was fabricated and characterized. The absorption spectrum as well as optical properties of this polymer waveguide was observed by the FTIR and prism coupler technique. The AFM was also used to monitor the morphology of the waveguide film.

1. Introduction
There is currently a great deal of interest in the investigation of optical polymers for optoelectronic and sensor applications [1-2]. Cyclo olefin copolymer (COC) is a new class of polymers; their properties can be tailored during polymerization within a wide range [3]. The COC possesses high transparency, high glass transition temperature (max. 220°C), high water and moisture barrier properties, excellent electric properties (ex: low dielectric constant, low dielectric loss tangent and high dielectric breakdown strength), and good thermal properties [4]. The excellent properties make COC materials potential candidates for optoelectronic applications. In this study, we tried to use this new COC material to make a popular waveguide films. The optic characteristics as well propagation property of the COC guiding film were investigated.

2. Experimental
2.1 Sample preparation
Slab polymer COC waveguides were fabricated on ITO (indium tin oxide) glass substrates by spin coating in a clean room. First, COC (APEL5014) powder was dissolved in toluene solvent. After 24hrs, complete dissolution of COC material was obtained, and then filtered by a filter (0.2 µm) to eliminate any undissolved impurities and dust before use. Five different COC solutions were made up and spin-coated on a well cleaned glass substrate at a rotation speed of between 400 and 1500 rpm. Then the polymer film was cured sufficiently in a vacuum oven. Planar polymer waveguide films with a thickness of between 1.0 µm and 2.0 µm were so obtained in this way.

2.2 Characterization of the COC waveguide film
To determine the optical properties of the polymer film, the spectra between the UV and the Visible range of the polymer films were measured, which covered the 600-1600 nm wavelength range. Simultaneously, the propagation losses and refractive indices of the COC films were measured by the prism coupler technique.

2.3 Poling treatment
The electric field-poling treatment was essential to changes the polymer film into a highly uniaxial medium by molecular alignment [5]. In order to clarify the features of molecular motion in the COC waveguide films under the influence of electric field. Both before and after poling, the optical behaviors and the surface morphology of the polymer film were examined by infrared spectroscopy analysis and AFM techniques in this study. The COC film was poled by applying an electric field of 85 V/µm at room temperature.

3. Results and discussions
The COC waveguide film was found to own high transparency, which was in the vicinity of 92% transmission as wavelength over the communication windows. The refractive index and propagation loss of the COC guiding film was measured by prism-coupler method and demonstrated in Table I. The refractive index and propagation loss of the slab polymer waveguide were found to be a function of the solution concentration for TE and TM-polarized light, and increase with the solution concentration. Therefore, we can tune the optical properties of COC film by properly adjusting the solvent concentration.

<table>
<thead>
<tr>
<th>COC concentration</th>
<th>3% TE</th>
<th>TM</th>
<th>4% TE</th>
<th>TM</th>
<th>5% TE</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractive index N</td>
<td>1.5193</td>
<td>1.5182</td>
<td>1.5250</td>
<td>1.5213</td>
<td>1.5289</td>
<td>1.5253</td>
</tr>
<tr>
<td>Propagation Loss (dB/cm)</td>
<td>0.15</td>
<td>0.32</td>
<td>0.23</td>
<td>0.36</td>
<td>0.30</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Table1. The refractive index and loss of the COC film for different concentration

Since the dipole distribution of the polymer film is a typically random oriented structure, an electric field poling...
is a necessary procedure to make the dipole reorientation in
the polymer film directed towards the poling field [5]. The
FTIR spectrum was used to investigate the dipole
reorientation of the polymer guiding film before and after
applying the electric field. It is well known that this
reorientation of the dipoles in the poled polymer film
would lead to a change in the intensity of the absorption
spectrum. A significant change in the chain conformation
was observed by comparing the spectra before and after
poling as shown in Fig. 1. We also found that the
infrared absorption intensity was increased after
poling and annealing, which indicated that the
dipole moments of the sample are tend to rearrange
to the preferred orientation. We thus concluded that a
change in the structure of the COC film took place after the
poling. Atomic force microscopy (AFM) was also utilized
to study the surface morphology of COC films before and
after electric voltage applied. The AFM images for the
three-dimension view of COC films before and after
poling were shown in Fig.2 (a) and (b), respectively.
Since the orientation of the molecular dipoles in COC
polymer film is typically randomized before poling, the
surface roughness of the COC film is higher than that after
poling. The surface roughness decreased after poling as a
result of the formation of the molecular chains regular
arrangement.

Fig. 1 The FTIR of mCOC waveguide film under some
treatments.

Fig. 2 The AFM images of COC polymer film (a) unpoled (b) poled

4. Conclusions
The COC film possesses high transparency and low
propagation loss. The optical properties of the COC
waveguide film were dependent on the solution
concentration. This modification methodology on the
optical characteristics has the potential to manufacture the
required COC polymer films of high quality. In addition,
the EO behavior could be also formed by high voltage
excitation and was assessed by the FTIR and AFM
techniques in this study. Therefore these characteristics
make the COC material be considered to be most promising
for the development of optoelectronic devices. We will
expand future applications of the COC materials in the
areas of integrated-optic, electro-optical and biosensor
applications.

Acknowledgements
We would like to express sincere thanks to the funding of the
research by the National Science Council of Taiwan. (NSC
92-2215-E-239-001).

References
of Quantum Electronics. 6 (2000) 54.

Appendix
Submitted to area 7
Poster presentation preferred