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1. Introduction

Plasma oscillations in heterostructures akin to a high-
electron mobility transistor (HEMT) and some others
with a two-dimensional (2D) electron channel under
the gate contact can be used for the detection, fre-
quency multiplication, and generation of terahertz radi-
ation [1,2]). Since the electron mobility in a 2D channel
can be rather high and, therefore, the collision frequency
of electrons with impurities can be very small, the qual-
ity factor of 2D plasma oscillations can markedly exceed
that in bulk systems. Different devices utilizing the ex-
citation of plasma oscillations in 2D systems have been
proposed and extensively studied both theoretically and
experimentally (see the review paper [2] and references
therein as well as recent publications [3-7]). In this com-
munication, we report the results of strict calculations
of the spectrum of plasma oscillations in a slot diode
structure with a 2D electron channel and strip-like short
circuited contacts. We show that the plasma frequen-
cies deviate from the “quantized” square-root spectrum
of 2D plasmons in uniform electron systems.

= /
2D/e|ectron channel

conducting contacts

Figure 1: Schematic view of the structure.

2. Equation of the model

As in ref. [8], we use a hydrodynamic electron trans-
port model, which includes continuity equation and the
Euler equation. The linearized versions of the conti-
nuity equation and the Euler equation for the ac com-
ponents of the electron sheet concentration ¥(z,t) =
Y. (z)exp(—iwt) and the electron velocity along the
channel u(z,t) = u, (x) exp(—iwt), where w is the signal
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frequency, can be presented in the following form (see
ref. [1] and subsequent ones, in particular, ref. [8]):
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The ac self-consistent electric potential ¢(z,z,t) =
Yu(z, z) exp(—iwt) obeys the two-dimensional Poisson
equation
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Here e = |e|, m, and v are the electron charge, effec-
tive mass, and collision frequency, respectively, Xy is
the steady-state value of the electron sheet concentra-
tion in the channel, which is determined by the dop-
ing (and/or by polarization and piezoelectric charges
in nitride semiconductors), @ is the dielectric constant
(which is assumed to be equal in the regions below and
above the channel), and §(z) is the Dirac delta function.
The directions z and x are perpendicular to and in the
channel plane, respectively (see Fig. 1).
Equations (1) and (2) can be reduced to the following:
e P o - O
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For the highly conducting contacts, the boundary con-
ditions can be presented as 90w|\z\zz,z:0 = 0. We shall
assume that the contacts are Ohmic. In this case, elec-
trons can freely pass through their edges (z = +I). As
a result, the hydrodynamic equations do not imply ad-
ditional boundary conditions for the potential at the
points z = +l. Equation (3) with the boundary condi-
tions lead to the following equation for the ac potential
in the 2D channel:
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Here ¢, = mc?% and (see, for example, ref. [9])
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is the function which is obtained from the Green func-
tion of 2D Poisson’s equation with the pertinent bound-
ary conditions.
3. Results

The ac potential of the 2D channel is searched in
the form of expansions over cos[n(2k — 1)z/2l] and
sin(rkz /1) with amplitudes s, and a; for symmetrical
and asymmetrical modes of plasma oscillations. As a
result, eq. (4) reduces to the following sets of equations:
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matrix elements of function G(&,¢') calculated numeri-
cally.The calculation of the eigenvalues of matrices 6}, ,,
and 6 ;, was based on the replacement of these infinite
matrices by the respective truncated matrices. Conver-
gence of the computational procedure used was verified
by the comparison of the eigenvalues calculated using
the matrices of different size K. Using the obtained
eigenvalues A, = A} and A, = A7, of matrices 67 ;, and
Gz,k,, where n = 1,2,3,... is the mode index, we ar-
rive at the following equations determining the plasma

oscillation spectrum:

where A, = , and 0}, ., and 67 ,, are the

w(w+iv) = Q2\3, w(w+iv) = Q2. (7)

271'26220 .

Here Q) = is the characteristic plasma fre-

mae
quency of 2D plasmons (with the wavenumber ¢ = 7 /I).
Assuming that Y¢ = 10'2 ecm™2, m = 6 x 10720 g,
e = 12, and I = 0.25 — 1 pm, one can get /27 ~
(0.714 — 1.428) THz.

Thus, the spectrum of plasma oscillations in a 2D
channel with two contacts is determined by {2 and A
(or A%). The former is a function of the 2D electron
system parameters (the electron concentration and ef-
fective mass as well as the spacing between contacts),
while the dimensionless factors A and A\? are deter-
mined by the shape of the contacts. The shape of the
contacts is taken in to account by the matrix elements
of the specific Green function G(&,¢').

The obtained values of the plasma modes frequen-
cies differ from those in a 2D electron channel with
bulky contacts, i.e. when the ac potential obeys the
boundary conditions ¢, |jz)=,- = 0. In this case,

Rew ~ Q4/(2n —1)/2 and Rew ~ Q4/n for symmet-

ric and asymmetric modes, respectively. Figure 2 shows
the real part of the plasma frequency Rew/2m versus
the mode index n. The dependence of the fundamen-
tal (n = 1) plasma s-mode vs the spacing between the
edges of the strip-like contacts is shown in the inset.
For comparison, the dependence of the real part of the
plasma frequency on the mode index for a 2D electron
channel obtained previously is also shown. One can see
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Figure 2: Plasma frequency Rew/27 of symmetric (s)
and asymmetric (a) modes vs mode index n for /27 =
1 THz and | = 0.25 pm (solid line with filled mark-
ers). Inset shows the frequency of symmetric mode with
n = 1 vs spacing 2l. Dotted lines with open markers
correspond to the data from ref. 8.

from Fig. 2 that the deviation of the plasma frequencies
calculated above from those obtained using a simplified
approach can be marked, particularly, for the funda-
mental mode (see the inset in Fig. 2)
4. Conclusions

In conclusion, we calculated the spectrum of plasma
oscillations in a slot diode structure with a 2D electron
channel and strip-like short circuited contacts. The
obtained plasma frequencies deviate from the “quan-
tized” square-root spectrum of 2D plasmons in uniform
electron systems. This deviation is marked for the
fundamental mode while it markedly decreases with
increasing mode index. Using the approach developed,
one can calculate the plasma oscillation spectrum of
2D systems with the contacts of arbitrary geometry.
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