Permittivity Enhancement of Hf_(1-x)Si_xO₂ Film with High Temperature Annealing

Kazuyuki Tomida, Koji Kita and Akira Toriumi

Department of Materials Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan Tel/Fax: +81-3-5841-7161, E-mail: tomida@adam.t.u-tokyo.ac.jp

1. Introduction

 $Hf_{(1-x)}Si_xO_2$ film is one of the most attractive materials for CMOS gate dielectrics. However, it is widely believed that $Hf_{(1-x)}Si_xO_2$ film has a lower permittivity (κ) than the pure HfO_2 because SiO_2 has a low permittivity ($\kappa \sim 3.9$). On the other hand, it has been found that a slight amount of yttrium (Y) doping into HfO_2 enhances the film permittivity, which is associated with the structural phase transformation from the monoclinic phase to the cubic one ^[1]. Furthermore, it has been reported that silicon (Si) doping changes the HfO_2 crystal structure ^[2]. From those results, it is possible that $Hf_{(1-x)}Si_xO_2$ film has a higher permittivity. In this work, we investigated the permittivity change of $Hf_{(1-x)}Si_xO_2$ films as functions of Si concentration and annealing temperature.

2. Experimental

 $Hf_{(1-x)}Si_xO_2$ films were deposited on two kinds of wafers. One is a floating-zone Si wafer for the transmission IR absorption and XRD measurements, and the other is a 100 nm Pt film on SiO₂/Si wafer for the permittivity measurement. All the films were deposited by co-sputtering method with HfO₂ and SiO₂ targets in Ar plasma. The samples were annealed at 400 - 800 °C in N₂ + 0.1 % O₂ ambient for 30 seconds at the atmospheric pressure. For structural analysis, we used the transmission FTIR and XRD measurements. To determine the film permittivity, we measured the capacitance of Au/Hf_(1-x)Si_xO₂/Pt MIM structure. The film thickness was determined with glazing incidence X-ray reflectmetry.

Fig. 1 XRD results of $Hf_{(1-x)}Si_xO_2$ (x = 0, 0.10, 0.16 and 0.60) film. Samples were annealed at 600 °C and 800 °C.

3. Results

Fig. 1 shows the results of XRD measurement for $Hf_{(1-x)}Si_xO_2$ films. Here, we can observe two important effects with Si doping into HfO₂. One is a suppression of the crystallization. The pure HfO₂ crystallizes at least over 600 °C, while Hf_(1-x)Si_xO₂ (x = 0.16 and 0.60) dose not crystallize at 600 °C and 800 °C, respectively. The other is the phase transformation. By 800 °C annealing, Hf_(1-x)Si_xO₂ (x = 0.10 and 0.16) crystallizes into the cubic phase, while the pure HfO₂ (x = 0) crystallizes into the monoclinic one. The trend of this phase transformation is similar to the case of Y doped HfO₂^[1].

The permittivity change of Hf_(1-x)Si_xO₂ films depending on Si concentration and annealing temperature is shown in Fig. 2. Characters a, m and c denote amorphous, monoclinic and cubic, respectively. Si concentration was determined by the HfO₂ and SiO₂ deposition rate. By 800 °C annealing, the permittivity of pure HfO_2 (x = 0) decreases with the crystallization into the monoclinic phase. Then, it means that the monoclinic HfO₂ has a lower permittivity than the amorphous HfO₂. On the other hand, the permittivity of $Hf_{(1-x)}Si_xO_2$ (x = 0.10 and 0.16) increases. Furthermore, those values exhibit much higher permittivity than the pure HfO₂. To our knowledge, this is the first observation of κ increase in Hf_(1-x)Si_xO₂ film. By 400 °C annealing, the permittivity of each film decreases with x. However, the permittivity of Hf_(1-x)Si_xO₂ is higher than the linear extrapolation line between that of the amorphous HfO₂ and SiO_2 . This fact means that the permittivity change of Hf_(1-x)Si_xO₂ cannot be explained with the simple effective media model.

Fig. 2 Permittivity values of $Hf_{(1-x)}Si_xO_2$ films, which were extracted from MIM capacitance. Characters a, m, and c denote amorphous, monoclinic, cubic, respectively.

Fig. 3 Molar volume change of $Hf_{(1-x)}Si_xO_2$ annealed at 800 °C. Molar polarizability α_m is extracted from cubic $HfO_2 V_m$ and κ . $Hf_{(1-x)}Y_xO_2$ results are from ref. 1.

3. Discussion

1) permittivity enhancement with structural phase transformation

The κ value is generally expressed in the Clausius – Mosotti equation as follows.

 $\kappa = (1 + 8\pi\alpha_m / 3V_m)/(1 - 4\pi\alpha_m / 3V_m)$ (1) Here, α_m and V_m is the molar polarizability and molar volum, respectively. We cannot determine the accurate α_m value experimentally, but can evaluate the V_m value from the lattice parameters determined by XRD in Fig. 1. **Fig. 3** shows the V_m values of Hf_(1-x)Si_xO₂ film annealed at 800 °C, where the V_m values of Hf_(1-x)Si_xO₂ decrease with x, while those of Y doped HfO₂ has a minimum at x = 0.04. It is suggested that this difference comes from the ionic radius discrepancy among Si (~0.26Å), Hf (~0.97Å) and Y (~1.04Å) atom.

Fig. 4 shows the κ values calculated from V_m in Fig. 3. Here, two cases are considered. One is the case of a constant α_m , and the other is the case the α_m is proportional to x (the additivity rule conventionally used^[3]). In Fig. 4, κ values determined experimentally are also shown. There is a good agreement between calculated κ values with a constant α_m and experimental ones. This fact indicates that the permittivity enhancement of $Hf_{(1-x)}Si_xO_2$ film (x < 0.16) mainly results not from the polarizability change, but from its molar volume shrinkage.

Fig. 4 permittivity of $Hf_{(1-x)}Si_xO_2$ annealed at 800 °C. Black squares denote experimental results and the others denote calculated ones.

Fig. 5 A schematic description for the increase of Si coordination number with Hf doping.

2) non-linear decrease of permittivity in amorphous film

The permittivity of $Hf_{(1-x)}Si_xO_2$ films (400 °C annealed) is also higher than that of the linear extrapolation between HfO_2 and SiO_2 , while the film structure keeps amorphous in all x region. This behavior can be also explained with the change of V_m . Assuming the conventional additivity rule, the V_m value, especially x = 0.60, is slightly smaller than the values evaluated with the effective media model.

This V_m shrinkage is similar to the reported case in ZrO_2/SiO_2 system, where it is suggested that the increase of coordination number of Si with Hf atom mixing rapidly reduces the V_m values ^[4].

The molar volume of SiO₂ decreases with its coordination number and structural change from ~37.75Å³ (fourfold/ α quartz) to ~23.32Å³ (six-fold/Stishovite). It is suggested that the mixture of SiO₂ with HfO₂ increases both Si ionicity and its coordination number (**Fig. 5**). This bond connectivity increase would reduce the V_m value of Hf_(1-x)Si_xO₂. Further experimental confirmation of the V_m change should be required.

4. Conclusion

We investigated the permittivity change of $H_{(1-x)}Si_xO_2$ film. As a result, by 800 °C annealing, it was found that $Hf_{(1-x)}Si_xO_2$ permittivity increases by a small amount of Si doping. This is the first observation of the permittivity enhancement in the $Hf_{(1-x)}Si_xO_2$ system We also investigated the structural change with Si doping, and revealed that the permittivity enhancement of $Hf_{(1-x)}Si_xO_2$ film comes from the structural phase transformation from the monoclinic HfO_2 to the cubic one, and its molar volume shrinkage. The permittivity of amorphous $Hf_{(1-x)}Si_xO_2$ films is also higher than the values expected by the effective media model. It is suggested that the increase of coordination number should reduce the V_m values and increase the κ value.

Those results mean that we can control the film permittivity and its crystallinity by adjusting Si concentration and thermal treatment condition.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan and by NEDO/MIRAI project.

References

- [1] K. Kita, et. al., Appl. Phys. Lett. 86, 102906 (2005).
- [2] K. Tomida, et. al., Ext. Abst. of SSDM, pp. 790 (2004).
- [3] R. D. Shannon, J. Appl. Phys. 73, 348 (1993).
- [4] R. A. B. Devine and A. G. Revesz, J. Appl. Phys. 90, 389 (2001).