Design Methodology for La₂O₃-Based Ternally Higher-*k* Dielectrics

Koji Kita, Yi Zhao, Yoshiki Yamamoto, Kentaro Kyuno and Akira Toriumi

Department of Materials Engineering, School of Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Phone : +81-3-5841-7161 Fax : +81-3-5841-7161 E-mail: kita@adam.t.u-tokyo.ac.jp

1. Introduction

The high- κ ternally composite oxides are reported to be promising in terms of permittivity (κ) [1-2], and high crystallization temperature (T_c) [3]. However, it has not been clarified how to choose the component oxides and adjust the composition, to meet the three requirements ; high κ ; high T_c , and large bandgap (E_g). The intimacy with Si is another important issue, but it has been already discussed in detail elsewhere [4]. In this study, we propose a design methodology of ternally oxides and demonstrate a κ :enhancement by appropriate choice of component oxides and their composition.

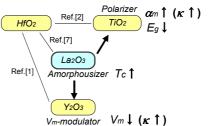
2. Concept of design methodology

We introduce a classification of the component oxides in three groups by their roles in the composite oxides ; " V_m -modulator," which modulates the molar volume (V_m) by helping structural ordering and stabilizing a closely-packed structure, "polarizer," which has extremely high molar polarizability (α_m) and enhances α_m of the composites, and "amorphousizer," which disturbs the structural ordering and restrains the composites from the crystallization. The last group increases T_c while the first two groups will modify the κ value, which is understandable from the Clausius-Mossotti (C-M) relationship $\kappa = (1 + 8\pi \alpha_m/3V_m)/(1 - 4\pi \alpha_m/3V_m)$. This equation indicates that the larger (α_m/V_m) gives higher κ value, *i.e.* increasing α_m or decreasing V_m will result in κ enhancement. The V_m -modulator can change the structural ordering and crystal phase of the composite oxides, which strongly affects the V_m . We have already reported that Y_2O_3 works as a V_m -modulator for HfO₂ by inducing a phase transformation from loosely-packed phase (monoclinic) to closely-packed phase (cubic), and increases k of HfO₂ significantly [1]. On the other hand, the polarizer increases α_m , because the α_m of composite oxides is often approximated by the molar fractional average of the α_m for each component [5], although the *polarizer* might degrade

Table 1. The properties of the component oxides and their classification into three groups. The α_m and V_m for Y₂O₃ and La₂O₃ are described with the form of $(\alpha_m/2) \times 2$ and $(V_m/2) \times 2$, respectively, just for the comparison with other oxides.

	La ₂ O ₃	Y_2O_3	TiO ₂	HfO ₂
Classification	Amorphsizer,	V_m -modulator	Polarizer	-
$\alpha_m (\text{\AA}^3)^{]}$	12 ×2 ^[5]	6.9 ×2 ^[5]	15.6 [5]	(not reported)
V_m (Å ³)	41.2 ×2 (hexagonal)	37.3 ×2 (cubic)	34.5 (anatase) / 31.1 (rutile)	34.4 (mono.) / 33.4 (cubic)
Metal ion radius (Å)	1.04 (La ³⁺)	0.97 (Y ³⁺)	0.68 (Ti ⁴⁺)	0.82 (Hf ⁴⁺)
$E_g (eV)$	6 [6]	6 [6]	3.5	5.8 [6]
Electron configuration	$5d6s^2$	$4d5s^{2}$	$3d^24s^2$	$5d^26s^2$

the E_g of the composite films at the same time, since high- α_m oxide always shows small E_g [6].


To obtain amorphous ternally oxides, we have to start with the oxide classified into the *amorphousizer*. La_2O_3 is an attractive *amorphousizer*, because of its higher κ value than other typical oxides categorized into this group, SiO₂ and Al₂O₃. Its character as the *amorphousizer* probably comes from the fact that La³⁺ ion has a large ionic radius and disturbs the formation of common structures of the ternally compounds with other oxides. As a matter of fact, it is reported that the addition of La₂O₃ to HfO₂ resulted in the increase of T_c [7]. In this study, we select La₂O₃ as the starting material and fabricate the ternally oxides by the addition of the V_m -modulator or the polarizer into La₂O₃. The examples of the oxides classified to those three groups are listed in Table 1. Y₂O₃ will work as the stabilizer for La₂O₃, whereas TiO₂ is a typical *polarizer*. Fig.1 is the schematic image of the concept of designing ternally oxides based on the role-classification of the components, in the case of selecting La₂O₃ as the starting material.

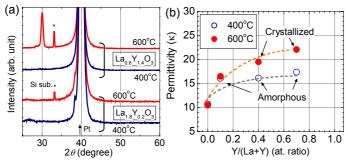
3. Sample Fabrication

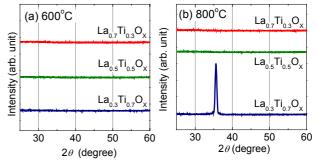
In order to evaluate the permittivity of the ternally composite oxide films, MIM (metal-insulator-metal) capacitors were fabricated. The ternally oxide films (15-20 nm thick) were deposited by RF co-sputtering of the oxide targets (La₂O₃, Y₂O₃, and TiO₂) in Ar ambient, on 100 nm-thick Pt films, which were previously deposited on thermally grown oxide on Si wafers. The films were annealed in N₂ or 0.1%-O₂+N₂ ambient at 400-800°C, followed by Au electrodes deposition. The thickness and the composition of the films were determined by the glazing incident x-ray reflectivity and the x-ray photoelectron spectroscopy measurement, respectively.

4. Results and Discussions

As the content of the V_m -modulator (Y₂O₃) increases, La₂O₃-Y₂O₃ composite films come to crystallize at 600°C as shown in **Fig.2-(a)**, while they remain amorphous at

Fig. 1 Schematic of our concept to design the ternally oxides, in the case of selecting La₂O₃ as the starting material. The component oxides are classified into three groups by their roles in the composite oxides, "amorphousizer," " V_m -modulator," and "polarizer." The κ , T_c , and E_g can be designed by the selection of the components and their compositions.




Fig. 2 (a) XRD spectra of La_2O_3 - Y_2O_3 composite films. The Y-rich film crystallizes at 600°C, while La-rich film remains amorphous. The peak at around 30° is attributed to orthorhombic LaYO₃ or hexagonal La₂O₃. The peaks at 33° and 40° (strong) are caused by Si-substrate and Pt electrode, respectively. (b) The κ of La₂O₃-Y₂O₃ composite films. The addition of Y₂O₃ increases κ value, but only the crystallized films show a significant κ enhancement.

400°C. The observed sharp peak at 2θ -30° can be attributed to orthorhombic LaYO₃ or hexagonal La₂O₃. The κ of La_2O_3 - Y_2O_3 composite films are shown in **Fig.2-(b)**. The κ enhancement by Y₂O₃ addition is clearly observed, however, it is not significant while the films are in amorphous phase. These results show that Y₂O₃ stabilizes the LaYO₃ or La₂O₃ crystal structure, and shrinks the V_m of the composite films. Thus it is suggested that the V_m -modulator cannot fully contribute to the κ enhancement until the film crystallizes, probably because the shrinkage of V_m does not proceed efficiently in amorphous phase.

Then, in order to design higher- κ composite films without crystallization, the modification of the other parameter of the C-M relationship, *i.e.* increasing α_m , is required. Thus we examined the effect of the addition of polarizer (TiO₂) into amorphous La₂O₃ films. As the results, the T_c beyond 800°C is attained as shown in **Fig.3**, as long as Ti/(La+Ti) is below 50at.%. The κ values of La₂O₃-TiO₂ composite films are shown in Fig.4. The κ increases significantly and approaches 30, even in amorphous phase, as the content of *polarizer* increases. However, there is a concern that the *polarizer* might decrease E_g of the composite films. Fig.5 shows the extinction coefficient of the La_2O_3 -TiO₂ composite films observed by the spectroscopic ellipsometry. The optical bandgap significantly decreases with the TiO₂ addition, which will cause a conduction band-offset degradation at oxide/Si interface seriously. Hf_xTi_{1-x}O₂ film is also reported to have a small conduction band-offset [8]. These facts indicate that controlling the content of *polarizer* is indispensable, to balance the high κ value with the large E_g . The alternative solution might be the choice of another *polarizer* which has moderate α_m value, or the formation of the higher- κ film stacking on a large- E_g oxide layer [9].

5. Conclusions

Designing of amorphous higher-k composite oxides was demonstrated by alloying La₂O₃ with other oxides. The κ enhancement was clearly observed by both decreasing V_m with the addition of V_m -modulator (Y₂O₃), and increasing α_m with the addition of *polarizer* (TiO₂). The *polarizer* effectively worked even in amorphous films, but the effect of the V_m -modulator was not apparent without

XRD spectra of the La₂O₃-TiO₂ composite films Fig. 3 deposited on Si substrate (without Pt electrode) and annealed at (a) 600°C and (b) 800°C. No peaks are detected even at 800°C, except for the Ti-rich film $(La_{0.3}Ti_{0.7}O_x)$, which shows a peak probably attributable to rutile-TiO₂.

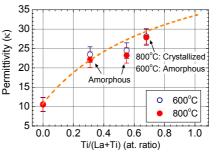


Fig. 4 Permittivity of La₂O₃-TiO₂ composite films. The high α_m^{-1} value of TiO₂ can increase κ significantly even in the amorphous phase. The κ of Ti-rich film is approaching ~30.

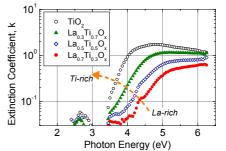


Fig. 5 Extinction coefficient of La₂O₃-TiO₂ composite films evaluated with the spectroscopic elliprometry. The refractive indices were extracted from Ψ - Δ data by point-by-point calculations. The optical bandgap degrades seriously by Ti addition. The main gap seems to be ~5eV for $La_{0.7}Ti_{0.3}O_x$ film, whereas ~4.5eV for $La_{0.3}T_{i0.7}O_x$ film.

crystallization. However, the content of the polarizer would be limited to prevent the degradation of E_g . These considerations will give a guideline for the design of the ternally higher- κ oxides for the advanced gate dielectrics.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan, and NEDO/MIRAI project.

References

- [1] K. Kita, K. Kyuno and A. Toriumi, Appl. Phys. Lett. 86, 102906 (2005).
- [2] F. Chen et al., Microelec. Eng. 72, 263 (2004)
- [3] C. Zhao et al., Appl. Phys. Lett. 86, 132903 (2005)
- [4] D.G. Schlom and J.H. Haeni, *MRS Bulletin*, 27, 198 (2002).
 [5] R.D. Shannon, *J. Appl. Phys.* 73, 348 (1993).
- [6] P.W. Peacock and J.Robertson, J. Appl. Phys. 92, 4712 (2002).
- [7] S.V.Ushakov, C.E.Brown and A.Navrotsky, J.Mater. Res 19,693 (2004).
- [8] V.V. Afanas'ev et al., J. Appl. Phys. 95, 7936 (2004).
- [9] S.J.Rhee et al., Tech.Dig.IEDM, 837 (2004).