## Ta-based metal gates (Ta, TaB<sub>x</sub>, TaN<sub>x</sub> and TaC<sub>x</sub>) -Modulated Work Function and Improved Thermal Stability-

Reika Ichihara, Yoshinori Tsuchiya, Yuuichi Kamimuta, Masato Koyama, and Akira Nishiyama

Advanced LSI Technology Laboratory, Toshiba Corp. 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8522, Japan Phone: +81-45-770-3667 Fax: +81-45-770-3578 E-mail:reika.ichihara@toshiba.co.jp

#### **1. Introduction**

Integration of dual metal gate with minimum change of CMOS device fabrication process is enormous challenge; different metals with suitable effective work function  $(\Phi_{m-eff})$  for n-type and p-type MISFET complicates fabrication process. From this point of view, we focused on  $\Phi_{m-eff}$  control using same metal-based compounds. In this paper, we investigated  $\Phi_{m-eff}$  and thermal stability of Ta-based metal (Ta, TaB<sub>x</sub>, TaN<sub>x</sub> or TaC<sub>x</sub>) /SiO<sub>2</sub> or HfSiON stack structures systematically. As a result,  $\Phi_{m-eff}$  changes from 4.4 eV (Ta) to 4.8 eV (TaC<sub>x</sub>) owing to the influence of constituents properties. We report TaC<sub>x</sub> is a promising candidate for p-type MISFET metal gate applicable to the conventional CMOS process flow.

### 2. Experimental

Ta-based metals were deposited on SiO<sub>2</sub>/p-Si or HfSiON/SiO<sub>2</sub>/p-Si to fabricate MIS capacitors. Deposition of Ta alloy films were performed by sputtering of Ta, TaB, Ta<sub>2</sub>N or TaC targets in Ar atmosphere. Deposited films show reasonably low resistivity values of approximately 100  $\mu\Omega$  cm (Fig. 1). To examine thermal stability of these stack structures, some samples were annealed at 800°C for 30 min, or at 1000°C for 20 s followed by forming gas annealing (FGA) at 450°C for 30 min. The C-V characteristics were measured at a frequency of 100 kHz. These samples were analyzed by TEM, back-side XPS and UPS.

### 3. Results and discussion

# A. Modulated $\Phi_{m-eff}$ and improved thermal stability of Ta-based gate electrodes

Fig. 2 shows that C-V curves for MIS capacitors with Ta-compounds shift to positive direction from that of pure Ta, implying  $\Phi_{m-eff}$  increase for alloyed materials. From y-intercepts of V<sub>fb</sub>-T<sub>eff</sub> relationships, we extract  $\Phi_{m-eff}$ without the influence of fixed charges (Fig. 3).  $\Phi_{m-eff}$  values change from 4.4eV (pure Ta) to 4.8 eV (TaC<sub>x</sub>). Fig. 4 shows that  $\Phi_{m-eff}$  is dependent on their electronegativities, suggesting that higher electronegativity of B, N, or C than that of Ta brings about  $\Phi_{m-eff}$  modulation.

As far as the conventional CMOS process flow is concerned, metal gate electrodes need to be stable under S/D activation condition. In TaB<sub>x</sub> samples after high temperature annealing, increased capacitance at inversion region suggests that boron penetration through SiO<sub>2</sub> into the channel region occurs (not shown). Fig. 5 shows that  $\Phi_{m-eff}$  of TaN<sub>x</sub> and TaC<sub>x</sub> are quite stable through 1000°C annealing, while  $\Phi_{m-eff}$  of Ta increases to 4.6 eV after the annealing. TEM observation (Fig. 6) reveals that Ta reacts heavily with SiO<sub>2</sub> and interfacial layer (I.L.) forms at 1000°C. The I.L. contains Ta, Si and O (EDX, data not shown). We also found that tiny crystal grains are involved in the I.L. (Fig. 7). Electron diffraction analysis reveals that these crystalline precipitates are  $TaO_x$  or  $TaSi_x$  (not shown). We believe that such reaction layer is responsible for the undesirable  $\Phi_{\text{m-eff}}$  increase after 1000°C annealing (Fig. 5). In contrast, there is no reaction layer between  $TaN_x$  or  $TaC_x$  and  $SiO_2$  even after 1000°C annealing (Fig. 6). It is clear that the suppression of the interface reaction in the case of  $TaN_x$  and  $TaC_x$  leads to the superior  $\Phi_{m-eff}$  stability (Fig. 5).

Although it is reported that  $\Phi_{m-eff}$  of many gate electrode materials on high-k insulator are different from that on SiO<sub>2</sub>,<sup>[1]</sup>  $\Phi_{m-eff}$  value of 4.9~5.0 eV for TaC<sub>x</sub>/HfSiON is obtained (Fig. 8), which is close to that of TaC<sub>x</sub>/SiO<sub>2</sub>. In addition,  $\Phi_{m-eff}$  does not change even after 1000°C annealing (Fig. 8). Thermal stability of TaC<sub>x</sub>/HfSiON structure is also confirmed by TEM image (Fig. 9), suggesting that the  $\Phi_{m-eff}$  stability stems from the chemically inert nature of the TaC<sub>x</sub>/HfSiON interface.

# B. Clarification of crucial factors that affect $\Phi_{m-eff}$ for TaC<sub>x</sub>/dielectric interfaces

 $\overline{W}$ ith regard to TaC<sub>x</sub>, vacuum work function ( $\Phi_{m-vac}$ ) and  $\Phi_{m-eff}$  near to E<sub>c</sub> have been reported,<sup>[2],[3]</sup> which are much  $\Phi_{\text{m-eff}}$  hear to  $E_{\text{c}}$  have been reported, which are much smaller than our  $\Phi_{\text{m-eff}}$ . So we carefully clarify the possible factors that influence  $\Phi_{\text{m-eff}}$  value. Firstly we certify the composition of our TaC<sub>x</sub> film, because excess C cause  $\Phi_{\text{m-eff}}$  to move toward  $\Phi_{\text{m-vac}}$  of C (5.0 eV)<sup>[4]</sup>. Fig.10 shows depth profiles of Ta and C in the TaC<sub>x</sub> film measured by RBS. Profiles are almost flat and the average C/Ta ratio is 0.9 (+/-0.1). If C atoms accumulate at the TaC<sub>x</sub>/dielectric interface,  $\Phi_{m\text{-eff}}$  would also reflect the  $\Phi_{m\text{-vac}}$  of C. To check this, Si-substrate was removed from the TaC<sub>x</sub>/SiO<sub>2</sub>/Si and angle resolved XPS from the SiO<sub>2</sub> side was practiced. XPS C1s spectrum shows a peak of C-Ta bonding in TaC<sub>x</sub> beneath SiO<sub>2</sub> layer (Fig.11). The Ta/C ratio, which is estimated from peak areas of Ta-C (C1s) and Ta4d, shows weak dependence on take-off angle (TOA) (Fig.12). This means that the C pile up never occurs in our specimen. Effect of dipoles at the metal/dielectric interface on  $\Phi_{m-eff}$ value should also be considered. We examined  $\Phi_{m-vac}$  of our TaC<sub>x</sub> film by means of ultraviolet photoelectron spectroscopy (UPS).  $\Phi_{m-vac}$  for the Ta film is also evaluated as a reference. As shown in Fig.13,  $\Phi_{m-vac}$  for the TaC<sub>x</sub> is higher than that of Ta, and their discrepancy (0.22 eV) is slightly smaller than that in  $\Phi_{m-eff}$  (0.4 eV, Fig.3). This result indicates that interface dipoles increase the  $TaC_x \Phi_{m-eff}$  to some extent. However, the main cause of our high  $\Phi_{m-eff}$  value for TaC<sub>x</sub>/dielectrics is  $\Phi_{m-vac}$  of the TaC<sub>x</sub>. The reason for the difference between our  $\Phi_{m-vac}$  and reported values is under investigation.

### 3.2 Conclusion

Effective work function and thermal stability of MIS structures with Ta and Ta-compounds electrodes have been investigated systematically. In Ta-compounds,  $\Phi_{m\text{-eff}}$  change of +0.4 eV and improved thermal stability are obtained. Relatively high  $\Phi_{m\text{-eff}}$  of TaC<sub>x</sub> gate (4.8~5.0 eV) on both SiO<sub>2</sub> and HfSiON is mainly due to high vacuum work function of the film. We suggest that tantalum carbide with excellent thermal stability is a promising p-type MISFET electrode.

#### References

- [1] Y.-C. Yeo et al., IEEE EDL., vol.23, (2002) P342
- [2] G. R. Gruzalski et al., Surf. Sci., vol.239, (1990) L517
- [3] J.K. Schaeffer et al., IEDM2004, P287
- [4] H.B. Michaelson et al., J. Appl. Phys., Vol.48, (1977) P4729





Ta/C Ratio

Fig. 11. Back-side XPS C1s spectrum of TaC<sub>x</sub> gate sample at take-off angle (TOA) of 90°. C-C peaks are due to surface contamination.







UPS spectra for Ta and TaCx.