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3. Analysis of δTSOI-induced scattering component 1. Introduction 
Calculation of the inversion layer mobility in sin-

gle-gate SOI MOSFETs is performed by relaxation time 
approximation. The 2-D subband structure is determined by 
solving Poisson and Schrödinger equations 
self-consistently. Roughness parameters (correlation length, 
Λs of 1.3nm and r.m.s value, ∆s of 0.55nm) are determined 
from the fitting of the universal curve in bulk MOSFETs. 
The same values of roughness parameters are used for BOX 
surface. We examine the effect of each term in eq. (1).  

It has been reported that the inversion layer mobility 
exhibits a significant SOI-thickness (TSOI) dependence in 
SOI MOSFETs [1, 2]. A scattering caused by the 
SOI-thickness-fluctuation (δTSOI) is considered to be one of 
the possible origins of this dependence [3]. Although sev-
eral theoretical works have been published [4, 5], 
δTSOI-induced scattering is not fully understood yet.  

In this study, we propose a unified model of roughness 
scattering in single-gate SOI MOSFETs. δTSOI-induced 
scattering component is naturally derived from the pro-
posed roughness scattering model. It is found that the ex-
perimental mobility lowering associated with thin SOI 
layer can be explained well by considering δTSOI-induced 
scattering component.  

It is found from Fig. 2 that the first term of r.h.s of eq. 
(1), ∆H1, alone leads to the significant TSOI-dependence of 
the mobility limited by this term, µ∆H1 [8]. The 
TSOI-dependence of µ∆H1 is due to the increase of electron 
occupancy in the 2-fold valley in thin SOI films (Fig. 3). 
The thinner inversion layer thickness in the 2-fold valley 
than in the 4-fold valley leads to the lower µ∆H1 in the 2-fold 
valley than in the 4-fold valley. Therefore, the large elec-
tron occupancy in the 2-fold valley causes the lower µ∆H1.  

 
2. Formulation of unified roughness scattering model 

The modeling of roughness scattering in SOI MOS-
FETs is difficult because the wave function of the inversion 
layer is modulated by the interface roughness and, as a re-
sult, the fundamental assumption of Born approximation is 
violated. To formulate roughness scattering model in SOI 
MOSFETs within the framework of perturbation theory, we 
transform the rough interface to the flat interface by intro-
ducing the appropriate coordinate transformation (Figure 1) 
[6]. Thus, a rough interface barrier is transferred to a regu-
lar interface barrier and the effect of the interface irregular-
ity is transferred from the interface barrier potential to other 
parts of the Hamiltonian, ∆H, which can be treated as per-
turbation:  

Fig. 4 shows the comparison of µ∆H limited by ∆H (all 
terms in eq. (1)) and µ∆H1 limited by the first term of eq. (1). 
The significant contribution from δTSOI-dependent term in 
eq. (1) is observed. We examine in Fig. 5 the effect of the 
third term of eq. (1), ∆H3. The non-negligible contribution 
from the third term of eq. (1) in Fig. 5 indicates that the 
consideration of only the conventional roughness scattering 
components [6, 7], first and second terms of eq. (1), is not 
enough for the quantitative evaluation of δTSOI-induced 
scattering component in SOI MOSFETs. As can be seen 
from Fig. 6, δTSOI-induced scattering component in eq. (1) 
causes the further decrease in µ∆H than in µ∆H1 and, as a re-
sult, leads to strong TSOI dependence.  
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  The first term of r.h.s of eq. (1) is the conventional sur-
face roughness scattering model [6]. δTSOI-dependent term 
in eq. (1) leads to δTSOI-induced scattering component and 
consists of the two contributions. The second term of r.h.s 
of eq. (1) is the contribution from the kinetic energy fluc-
tuation and leads to the scattering component associated 
with the sub-band energy fluctuation [7]. The third term of 
eq. (1) is the contribution from the potential energy fluctua-
tion newly found in the present study. Thus, the roughness 
scattering model proposed above is the unified scattering 
model applicable to single-gate SOI MOSFETs and in-
cludes the roughness scattering model both in bulk MOS-
FETs and thin SOI MOSFETs.  

 
4. Comparison with experimental results 

For the comparison of the calculated results with the 
experimental data at room temperature, mobility limited by 
phonon scattering, µphonon, is also taken into account. As can 
be seen from Fig. 7, µphonon in thin single-gate SOI films is 
almost determined from that in the 2-fold valley because of 
the large occupancy in the 2-fold valley (Fig. 3).  

Fig. 8 show the comparison of the calculated inversion 
layer mobility, µeff, in thin single-gate SOI films with the 
experimental data as a function of TSOI at effective electric 
field (Eeff) of 0.6MV/cm. Contributions from both phonon 
scattering and roughness scattering calculated by eq. (1) are 
accounted for in the calculation. From Fig. 8, the first term  
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of r.h.s of eq. (1) alone cannot fully explain the experimen-
tal TSOI dependence of µeff in thin SOI films. The experi-
mental results can be explained well by considering 
δTSOI-induced scattering component, the second and third 
terms of r.h.s of eq. (1).  

 
5. Conclusions 
   A unified model of roughness scattering in single-gate 
SOI MOSFETs has been proposed. It was found that 
δTSOI-induced scattering component derived from this uni-
fied roughness scattering model leads to the significant TSOI  fied roughness scattering model leads to the significant TSOI  
  
  
  
  
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

dependence of the inversion layer mobility in SOI MOS-
FETs.  
dependence of the inversion layer mobility in SOI MOS-
FETs.  

It was also found that the experimental mobility low-
ering associated with thin SOI layer can be explained well 
by considering δTSOI-induced scattering component. 

It was also found that the experimental mobility low-
ering associated with thin SOI layer can be explained well 
by considering δTSOI-induced scattering component. 
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 Fig. 1 Schematic diagram explaining the derivation of the 

δTSOI-induced scattering component in SOI MOSFETs. Θ(z)=1 for z>0 
and Θ(z)=0 for z<0. Vs(z) is potential distribution in SOI film.    
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 Fig. 4 Comparison of Eeff depend-

ence of µ∆H and µ∆H1 calculated
based on Eq. (1).   
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Fig. 7 Calculated electron µphonon in 
the 2-fold and the 4-fold valleys and 
the total electron µphonon as a func-
tion of TSOI. 

  
  

 
 

 
 

 

 

 
 
 

 
 
 

Fig. 6 Eeff dependence of µ∆H limited
by ∆H (all terms in eq. (1)) and µ∆H1

limited by the first term of eq. (1) as a 
parameter of TSOI.  

 

Fig. 3 Calculated Ns dependence of 
electron occupancies of the 2-fold 
valleys as a parameter of TSOI.  

 

Fig. 2 Eeff dependence of µ∆H1 calcu-
lated by the first term of r. h. s of eq. 
(1) as a parameter of TSOI.  
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Fig. 8 Comparison of calculated in-
version layer mobility in thin SOI 
films with the experimental one [3] as 
a function of TSOI at Eeff of 0.6MV/cm. 

Fig. 5 Eeff dependence of µ∆H with
and without the third term of eq. (1)
as a parameter of TSOI.  
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