# Advanced split-CV technique for accurate extraction of inversion layer mobility in short channel MOSFETs

H. Irie and A. Toriumi\*

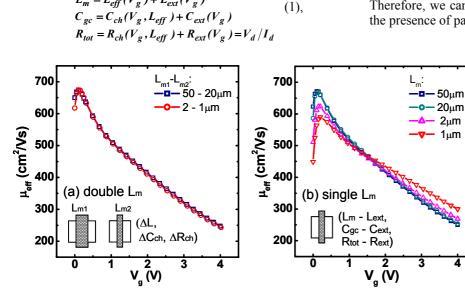
Department of Materials Engineering, School of Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

TEL and FAX: +81-3-5841-7161 \*E-mail: toriumi@material.t.u-tokyo.ac.jp

# 1. Introduction

It has been reported<sup>[1,2]</sup> that the accuracy of the extracted mobility is harmed in ultrathin gate MOSFETs  $(T_{ox} < 1.5 nm)$  due to a significant leakage current. From the viewpoint of suppressing the influences of leakage current, using MOSFETs with a shorter channel length is favorable<sup>[1]</sup> because  $I_{ch}/I_g$  is proportional to  $L^{-2}$ . However, the uncertainty of effective channel length (Leff) due to an ambiguity of its definition and the  $V_g$  dependence brings a significant error in short channel MOSFETs, where even a small error of L<sub>eff</sub> introduces a severe artifact. Additionally, in short channel MOSFETs, parasitic capacitances (Cext) and resistances ( $R_{ext}$ ) deviate measured  $I_d$  and  $C_{gc}$  from ideal one and should be subtracted completely including those V<sub>g</sub> dependences. These situations make it difficult to use short channel MOSFETs. As a result, previous authors have used relatively long channel length  $(L=10\mu m)^{[1,2]}$ . In this study, we have developed a method to exclude both the uncertainty of  $L_{\text{eff}}$  and the  $V_g$  dependences of  $C_{\text{ext}}$  and  $R_{\text{ext}}$  in mobility extraction. This method allows accurate mobility extraction including short channel MOSFETs.


## 2. Measurement Samples

The samples were conventional n-MOSFETs with an n+ poly-Si gate. The channel length ranging from 1µm to 50µm and the channel width of 100µm were used. The substrate impurity concentration was undoped,  $N_{A} \!=\! 2x10^{15}$  $cm^{-3}$ . The gate oxide was SiO<sub>2</sub> formed by rapid thermal oxidation, and its thickness was 6nm.

### 3. The Double L<sub>m</sub> Method

 $L_m = L_{eff}(V_g) + L_{ext}(V_g)$ 

Mutual relationships among key parameters in mobility calculation can be described as follows:



where 
$$L_m$$
: mask length,  $L_{eff}$ : effective channel length,  $L_{ext}$ :  
mismatch between  $L_m$  and  $L_{eff}$  (generally called as  $\Delta L$  but  
changed to prevent a confusion in this paper),  $C_{gc}$ : measured  
gate-channel capacitance,  $C_{ch}$ : intrinsic gate-channel  
capacitance,  $C_{ext}$ : parasitic capacitance,  $R_{tot}$ : total resistance  
(= $V_d/I_d$ ),  $R_{ch}$ : channel resistance,  $R_{ext}$ : parasitic resistance.  
Note that all the parasitic components ( $L_{ext}$ ,  $C_{ext}$ , and  $R_{ext}$ )  
have  $V_g$  dependence and that only the intrinsic components  
( $L_{eff}$ ,  $C_{ch}$  and  $R_{ch}$ ) change when  $L_m$  is changed.

In the proposed method, called as the double L<sub>m</sub> method below, two MOSFETs with different L<sub>m</sub> are used  $(L_{m1} \text{ and } L_{m2}, L_{m1} > L_{m2})$ . And the characteristic parameters for mobility calculation are re-defined as the differences of each parameter between two devices as follows:

$$\Delta L \equiv L_{m1} - L_{m2} = L_{eff1} - L_{eff2}$$

$$\Delta C_{ch}(V_g, \Delta L) \equiv C_{gc1} - C_{gc2} = C_{ch1} - C_{ch2}$$

$$\Delta R_{ch}(V_g, \Delta L) \equiv R_{tot1} - R_{tot2} = R_{ch1} - R_{ch2}$$
(2).

Note that these three parameters are determined experimentally without any assumptions and perfectly free from parasitic components. In equation (1), the parasitic components do not depend on L<sub>m</sub>, so those are cancelled out when the subtraction is performed. Then, if we assume that the two MOSFETs have the same mobility and  $V_{th}$ , we can re-write the formula of effective mobility<sup>[1]</sup> by using the parameters in equation (2) as follows:

$$\mu_{eff} = \Delta L^{2} \cdot \frac{1}{\int \Delta C_{ch} \cdot dV_{g}} \cdot \frac{1}{\Delta R_{ch}}$$

$$= (L_{m1} - L_{m2})^{2} \frac{1}{\int (C_{gc1} - C_{gc2}) \cdot dV_{g}} \cdot \left(\frac{V_{d}}{I_{d1}} - \frac{V_{d}}{I_{d2}}\right)^{-1}$$
(3).

Comparing this method with the conventional split-CV technique, all parameters in equation (3) are free from parasitic components and determined experimentally. Therefore, we can extract accurate mobility independent of the presence of parasitic components.

> Fig.1. (a) Effective mobility extracted by newly developed double L<sub>m</sub> method for two L<sub>m</sub> sets,  $(L_{m1}-L_{m2}: 50-20\mu m)$  and  $(L_{m1}-L_{m2}: 2-1\mu m)$ . The double L<sub>m</sub> method uses two MOSFETs with different L<sub>m</sub> and calculates the mobility by using the differences of parameters. One can see that the two curves agree with each other perfectly independent of  $L_m$  value. (b) Effective mobility extraced by the conventional single  $L_m$  method, where Lext and Rext were assumed to be constant and obtained by the channel resistance method<sup>[3]</sup>, and  $C_{ext}$  was defined as Cgc at strong accumulation. A clear deviation is observed among different Lms.

### 4. Results and Discussions

**Figure 1(a)** shows effective mobility extracted by newly developed double  $L_m$  method for two  $L_m$  sets,  $(L_{m1}-L_{m2}: 50-20\mu\text{m})$  and  $(L_{m1}-L_{m2}: 2-1\mu\text{m})$ . One can see that the two curves agree with each other perfectly independent of  $L_m$  value. This indicates that the double  $L_m$  method allows accurate mobility extraction in short channel MOSFETs down to  $L_m=1\mu\text{m}$ . On the other hand, **Fig.1(b)** shows effective mobility extracted by the single  $L_m$  method (conventional split-CV technique with some considerations to parasitic components), where  $L_{ext}$  and  $R_{ext}$  were assumed to be constants and obtained by channel resistance method<sup>[3]</sup>, and  $C_{ext}$  was defined as  $C_{gc}$  at strong accumulation. A clear deviation is observed among different  $L_ms$ .

Then, what causes the error in the single  $L_m$  method? We suspect that the error is necessarily introduced because the single  $L_m$  method ignores the Vg dependences of  $L_{ext}$ ,  $C_{ext}$ , and  $R_{ext}$ . To verify this hypothesis,  $C_{ext}$  and  $R_{ext}$  were estimated on the assumption that  $L_{eff}$  is a constant. Fig.2 and Fig.3 show the Vg dependences of  $C_{ext}$  and  $R_{ext}$ , which were decomposed from  $C_{gc}$  and  $R_{ext}$  by using the constant  $L_{eff}$ obtained by the shift-and-ratio method<sup>[3]</sup>. Those figures clearly show that  $C_{ext}$  and  $R_{ext}$  are not constants but depend on the Vg. The single  $L_m$  method does not consider this Vg dependence, so that causes significant error when  $L_m$  is small, where  $C_{ext}$  and  $R_{ext}$  cannot be negligible.

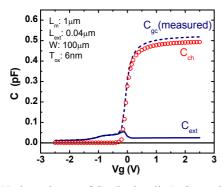



Fig.2.  $V_g$  dependences of  $C_{gc}$  (broken line),  $C_{ch}$ , and  $C_{ext}$  on the assumption that  $L_{eff}$  is a constant. The used  $L_{eff}$  was 0.96 $\mu$ m, estimated by the shift-and-ratio method<sup>[3]</sup>.

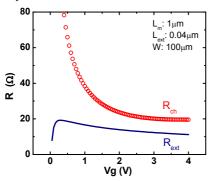



Fig.3.  $V_g$  dependences of  $R_{ch}$  and  $R_{ext}$  on the assumption that  $L_{eff}$  is a constant. The used  $L_{eff}$  was 0.96 $\mu$ m, estimated by the shift-and-ratio method<sup>[3]</sup>.

Next,  $V_g$  dependence of  $L_{eff}$  is discussed. We can describe  $I_d$  characteristics as follows:

$$I_d = \frac{W}{L_{eff}} \cdot \mu \cdot qN_s \cdot (V_d - R_{ext}I_d) \qquad (4).$$

Therefore, once the accurate value of mobility and carrier concentration are obtained by the double  $L_m$  method, uncertain parameters are only  $L_{eff}$  and  $R_{ext}$ . Though the two parameters cannot be determined automatically, we can estimate those by fitting the calculated  $I_d$  to the measured one as considering both  $L_{eff}$  and  $R_{ext}$  are two fitting parameters. In addition, if we consider  $L_{eff}$  and  $R_{ext}$  are constant in a certain range of  $V_g$  and change the  $V_g$  range by a certain step, the  $V_g$  dependence of  $L_{eff}$  and  $R_{ext}$  can be obtained. Actually, we define correct values of  $L_{eff}$  and  $R_{ext}$  as those minimize the value of  $\sigma$  described as follows:

$$\sigma(L_{eff}, R_{ext}) = \sum_{V_g} \left( \frac{I_{d_calc}(L_{eff}, R_{ext}) - I_{d_meas}}{I_{d_meas}} \right)^2 \quad (5).$$

Figure 4 shows the  $V_g$  dependences of  $L_{eff}$  and  $R_{ext}$ . One can see that  $L_{eff}$  shows a strong dependence on the  $V_g$ .

Through those investigations, it is clarified experimentally that all the parasitic components in mobility calculation,  $L_{eff}$ ,  $R_{ext}$ , and  $C_{ext}$ , depend on the  $V_g$  and that the proposed double  $L_m$  method is valid to correct this effect completely.

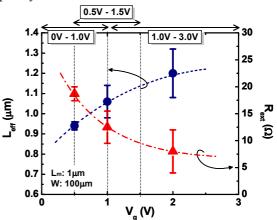



Fig.4. L<sub>eff</sub> and R<sub>ext</sub> which gives best fit between calculated I<sub>d</sub> and measured I<sub>d</sub> in three regions of V<sub>g</sub>; V<sub>g</sub>:0V-1.0V, V<sub>g</sub>:0.5V-1.5V, and V<sub>g</sub>:1.0V-3.0V. The two parameters show strong dependences on the V<sub>g</sub>.

#### 5. Conclusions

We have developed a simple but rigorous correction method for accurate mobility extraction. The method uses two MOSFETs with different channel lengths and re-defines differences of channel length, capacitance, and resistance as the parameters for mobility calculation. We also demonstrate the superiority of this method in short channel MOSFETs where parasitic components play a significant role. This method is a promising method to extract mobility in MOSFETs with ultrathin gate dielectrics because it gives accurate mobility even in short channel MOSFETs.

#### Acknowledgements

The authors thank J. Koga, Y. Sugiyama, S. Saito, Y. Harada and M. Yoshimaru in STARC for intensive discussions. **References**:

[1]S. Takagi et al., Jpn. J. Appl. Phys., 41 (2002) pp. 2348.

[2]L. Lucci *et al.*, IEDM Tech. Dig., (2003) pp. 463.

[3]Y. Taur and T. H. Ning, "Fundamentals of Modern VLSI Devices", Cambridge University Press, (1998) chapter 4.