Analysis of the Origin of the Threshold Voltage Change Induced by Impurity in Fully Silicided NiSi/SiO₂ gate stacks

Kenzo Manabe, Kensuke Takahashi, Takashi Hase, Nobuyuki Ikarashi, Makiko Oshida, Toru Tatsumi and Hirohito Watanabe

System Devices Research Laboratories, NEC Corporation

1120, Shimokuzawa, Sagamihara, Kanagawa 229-1198, Japan

Phone: +81-42-771-2294, Fax: +81-42-771-2481, E-mail: k-manabe@ce.jp.nec.com

1. Introduction

Metal gate electrodes have been studied extensively to improve the current drive capability in future metal-oxide-semiconductor field effect transistors (MOSFETs). Fully silicided (FUSI) NiSi metal gate electrodes have received increasing attention due to their simple integration scheme and controllability of the threshold voltage (V_{th}) by implanting the poly-Si gate electrodes prior to silicidation on SiO₂ [1]. It has been reported that the V_{th} change is related to the impurity redistribution at the NiSi/SiO2 interface during silicidation [1]. Some reports propose the reason of the V_{th} change [1, 2]. It has also been reported that the V_{th} change for the NiSi/HfSiON gate stack is much smaller than that for the NiSi/SiO₂ gate stack [3]. However, the origin of the V_{th} change has not been identified. It is important to address the mechanism of the V_{th} change in order to control the uniformity of V_{th} and to reveal the reason for the suppression of the V_{th} change on the HfSiON dielectric.

Figure 1 shows the major factors to determine the V_{th} shift by impurity: (a) the change in work function of the electrode in vacuum (ϕ_m), (b) the fixed charge (Q_{fix}) within SiO₂ and (c) the dipole moment (d_{inter}) at the NiSi/SiO₂ interface. In this work, we investigated the origin of the V_{th} change by impurity for the NiSi/SiO₂ gate stack, using backside X-ray photoelectron spectroscopy (XPS) and electrical measurements. It was found that neither factor (a) nor (b) is a dominant factor to determine the V_{th} . The obtained results indicate that a possible origin of the V_{th} change is the dipole moment due to the substitution of impurity atoms for the Si and/or Ni atoms at the NiSi/SiO₂ interface.

2. Experimental

We fabricated P-doped, As-doped and Sb-doped FUSI-NiSi/SiO₂ (oxide thickness = 1.4 - 3nm) capacitors. The impurity concentrations in poly-Si were $2 - 4.6 \times 10^{20}$ cm⁻³. The backside XPS measurement was performed to evaluate the change in ϕ_m and the d_{inter}. For the XPS measurement, the Si substrate was removed mechanically and chemically, as illustrated in Fig. 2. Photoelectrons from SiO₂ and NiSi were detected because the thickness of SiO₂ is less than 3 nm. The change in ϕ_m of NiSi was determined from the shift of the binding energy (BE) of Si2p in NiSi, since the BE of Si2p was measured from the Fermi level of NiSi when NiSi was grounded (Fig. 3). The d_{inter} was detected as the BE shift of O1s in SiO₂, because the d_{inter} induces voltage drop (V_{int}) across the interface region, as shown in Fig. 4. The Q_{fix} within SiO₂ was evaluated from the dependence of the flatband voltage (V_{FB}) and the equivalent oxide thickness (EOT).

3. Results and Discussion

(a) Work function of the electrode in vacuum

Figure 5 is the XPS spectrum of the Si2p of the NiSi electrodes. The spectrum of the Si2p for the impurity-doped samples was almost the same as that for the Non-doped sample. Figure 6 shows the relationship between the V_{th} change and the BE shift of Si2p in NiSi. The figure shows that the BE for impurity-doped samples was almost the same as that for Non-doped sample within an experimental error (0.05 eV), although the V_{th} change for the P-doped, As-doped and Sb-doped samples was 0.12-0.2 V, 0.2-0.3 V and 0.4 V, respectively. Therefore, we conclude that the change in the ϕ_m of NiSi is not a dominant causal factor of the V_{th} change.

(b) Fixed charge within SiO₂

Figure 7 shows the dependence of the V_{FB} on the EOT for the

Non-doped and P-doped samples. From the slope of the relationship between the V_{FB} and the EOT, the Q_{fix} within SiO₂ for both samples was estimated to be less than 3×10^{11} e/cm² (e: electronic charge), which results in weak dependence of the V_{FB} on the EOT. In Table I, the Q_{fix} is summarized. The Q_{fix} within SiO₂ for the As-doped and Sb-doped samples was as low as those for the Non-doped and P-doped samples. These results indicate that the Q_{fix} , within SiO₂ is not a dominant causal factor of the V_{th} change. However, the possibility that the Q_{fix} at the NiSi/SiO₂ interface causes the V_{th} change is not excluded, since the evaluated Q_{fix} does not include the Q_{fix} at the NiSi/SiO₂ interface.

(c) Dipole moment at the NiSi/SiO₂ interface

Figure 8 is the XPS spectrum of O1s in the SiO₂ dielectric. The BE of O1s for the impurity-doped samples was higher than that for the Non-doped sample. The higher BE of O1s indicates the existence of the d_{inter}, which consists of the positive charge on the SiO₂ side and the negative charge on the NiSi side, as illustrated in Fig. 4. Figure 9 shows the relationship between the V_{th} change and the BE shift of O1s in SiO₂. The BE shifts were strongly correlated with the V_{th} change. These results indicate that a dominant causal factor of the V_{th} change is the d_{inter} and/or the Q_{fix} at the NiSi/SiO₂ interface, which results in the interface dipole that consists of the Q_{fix} in SiO₂ and its image charge in NiSi.

(d) Origin of the V_{th} change

The obtained results show that a dominant causal factor of the V_{th} change is the d_{inter} and/or Q_{fix} at the NiSi/SiO₂ interface, which are induced by the impurity at the NiSi/SiO₂ interface. Figure 10 shows the XPS spectrum of the impurity atoms at the NiSi/SiO₂ interface for the P-doped and Sb-doped samples. The P2p and Sb3d_{5/2} peaks consisted of two peaks (main-peak and sub-peak). The BE of the sub-peak was higher than that of the pure P and Sb substance, which indicates that a part of the impurity atoms is bonded to the O atoms at the NiSi/SiO₂ interface.

Considering the radius of the impurities (Table II), it is thought that the diffusion of P into SiO_2 occurs more easily than that of Sb. However, the V_{th} change for the P-doped sample is smaller than that for the Sb-doped sample at the same impurity concentration in the NiSi electrode (Fig. 11). Thus, it is convincing that the d_{inter} rather than the Q_{fix} at the NiSi/SiO₂ interface is the origin of the V_{th} change.

A possible origin of the d_{inter} is the substitution of impurity atoms for the Si and/or Ni atoms at the NiSi/SiO₂ interface, as shown in Fig. 12. Since the electronegativity of impurity (X) is larger than that of Ni and Si (Table II), the charge +Q' on the impurity atoms is smaller than the charge +Q on the Ni and Si atoms. Thus, the dipole moment of the X-SiO₂ bond is smaller than that of the Ni/Si-SiO₂ bond, which results in the effective dipole moment, as illustrated in Fig. 12. We estimated the effective dipole moment based on the principle of electronegativity equalization [4] and calculated the V_{th} change assuming that the dipole density equals the impurity density estimated from the XPS sub-peak. The calculated V_{th} change for the Sb-doped sample (0.35 V) is similar to the experimental value (0.38 V). This implies that the interface dipole moment is a possible origin of the V_{th} change.

4. Conclusion

We investigated the origin of the V_{th} change by impurity in FUSI-NiSi gate electrodes on a SiO₂ gate dielectric, using electrical measurements and a direct analysis of the NiSi/SiO₂

interface by XPS. The results indicate that a possible origin of the V_{th} change is the dipole moment due to the substitution of impurity atoms for the Si and/or Ni atoms at the NiSi/SiO₂ interface.

References

Fig. 1 Possible origins for the V_{th} change induced by impurity.

Fig. 5 XPS spectrum of Si2p in NiSi .

Fig. 11 Dependence of the V_{th} change on the impurity concentration in the NiSi electrode.

Fig. 2 Sample for the backside XPS measurement.

Fig. 6 Relationship between the V_{th} change and the binding energy (BE) shift of Si2p in NiSi.

Fig. 9 Relationship between the V_{th} change and the binding energy (BE) shift of O1s in SiO₂.

Element	Electronegativity	Radius (nm)
Ni	1.94	0.121
Si	2.14	0.111
Р	2.93	0.106
As	2.68	0.119
Sb	3.04	0.138

Table II Electronegativity and covalent radius. The electronegativity of impurity is estimated by the calculation of charge transfer for Si-X (X : impurity) cluster.

[1] J. Kedzierski et al., IEDM 2003, pp.315-318 (2003).

[2] K. Sano et al., SSDM 2004, pp.456-455 (2004).

[3] E. Cartier et al., VLSI 2004, pp.44-45 (2004).

[4] H. Z. Massoud, J. Appl. Phys. 63, p.2000 (1988).

Fig. 3 Evaluation of the change in metal work function $\Delta \varphi_m$. Since NiSi is grounded (Fig. 2), the binding energy (BE) of Ni2p and Si2p is measured from the Fermi level of NiSi. Thus, the change in BE corresponds to $\Delta \varphi_m$.

EOT (nm) Fig. 7 Relationship between the EOT and the V_{FB} for the Non-doped and P-doped NiSi/SiO₂ capacitors.

Fig. 4 Effect of the interface dipole moment (d_{inter}) on the binding energy (BE) of Si2p and O1s in SiO₂. The voltage drop (V_{int}) across the interface region due to the dipole causes the BE shift of Si2p and O1s in SiO₂.

Electrode	$Q_{\rm fix}$ (cm ⁻²)
Non-doped	$0.7 X 10^{11}$
P-doped	2.2×10^{11}
As-doped	0.3X10 ¹¹
Sb-doped	2.0×10^{11}

Table I Fixed charges $(Q_{\rm fix})$ evaluated from the slope of the relationship between the $V_{\rm FB}$ and the EOT.

Fig. 12 Possible origin of the interface dipole. The substitution of impurity atoms for the Si and/or Ni atoms causes the effective dipole moment (d_{eff}) due to the larger electronegativity of impurity atoms.