

Design and Architecture Exploration for Image and Video Coding Systems

Chao-Tsung Huang and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering and
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

E-mail:{cthuang, lgchen}@video.ee.ntu.edu.tw

1. Introduction

Low cost and low power hardware with sufficiently
high performance is extremely essential for image and
video coding applications to be popular. Thus, efficient
hardware implementations in VLSI are of vital importance.
However, image and video algorithms usually require very
high computational complexity. In this paper, the design
methodologies for existing and future hardware architec-
tures of image and video coding are explored. The general
design methodologies will be presented first, which include
computational analysis, data access analysis, and
rate-distortion-complexity analysis. Then, hardware archi-
tecture design concepts, including system architectures and
module design, will be illustrated by use of a real design
example for H.264/AVC encoder. Last of all, new chal-
lenges and possible future directions for image and video
coding implementation will be discussed, which mainly
come from rate-constrained coding flow, open-loop tempo-
ral prediction, and scalable coding.

2. General Design Methodologies

The optimization of hardware design for image and
video coding systems can be achieved by considering the
two different levels of architecture design: system design
and module design. The former decides the whole system
architecture and the relationship between modules. The
latter is to optimize each module according to the allocated
resource and constraints.
System design

The system architecture is usually designed by use of
computation analysis and data access analysis that consider
computing and data issues, respectively. The computation
analysis is to classify the coding tools in the adopted coding
algorithm into different level computational characteristics
and choose the suitable implementation types, which in-
cludes characteristic and complexity analysis.

Fig. 1 shows the computational characteristic analysis,
which categorizes computation into three different levels of
operations. The low-level operation represents highly regu-
lar computation and predictable computational flow. It is
suitable to be implemented by dedicated hardware because
its complexity is usually very high and the regular compu-
tation can be accelerated via parallel processing. The
high-level operation represents highly irregular computa-
tion and unpredictable computational flow. However, its
complexity is usually much lower than the low-level opera-
tion. Thus, it is suitable to be implemented using program-
mable design. Between these two extremes, the me-

dium-level operation is preferred to be implemented by use
of configurable architecture that can be on-the-fly adapted
according to data-dependent decisions.

Fig. 1 Computational characteristic analysis and the corre-
sponding preferred implementation.

Fig. 2 General memory hierarchy: off-chip memory, on-chip
memory, and registers.

The data access analysis is used to decide how data are
transferred in the system. It analyzes how data should be
stored for access and how data are transferred between
modules. The storage and access issue is to optimize and
balance the adopted memory hierarchy as shown in Fig. 2.
Off-chip memory can provide highest cell density and ca-
pacity but suffers larger access power and lower access
speed. On-chip memory is usually used as a cache to reduce
the access of off-chip memory, but it may occupy signifi-
cant chip area. Registers can be used for the fastest and
most flexible storage elements. On the other hand, the in-
terconnect issue is to decide how to allocate global bus and
dedicated connection. The global bus provides flexible
configuration and saves the interconnect area. The dedi-
cated interconnect is to provide high throughput and effi-
cient communication between highly related modules.

Highly Regular Computation,
Predictable Computational Flow

Low-Level Operation

Frequently Irregular Computation,
Data-Dependent Decisions

Medium-Level Operation

Highly Irregular Computation,
Unpredictable Computational Flow

High-Level Operation

Dedicated

Programmable

Computational
 Characteristic

Preferred
Implementation

Configurable

Off-Chip
Memory

On-Chip
Memory

On-Chip
Memory

Reg Reg

Reg Reg

Reg Reg

Reg Reg

Access Speed, Flexibility, Access Power
GoodBad

Cell Density, Storage Capacity
BadGood

Extended Abstracts of the 2005 International Conference on Solid State Devices and Materials, Kobe, 2005,

-312-

D-6-1 (Invited)

pp.312-313

Module design

After the system architecture is defined, every module
can be designed by use of algorithm-level and architec-
ture-level optimization. The algorithm-level optimization is
mainly to optimize the rate-distortion quality under given
complexity constraints, or vice versa. More computation
power results in better visual quality. The architecture-level
optimization is to perform data flow smoothing and to bal-
ance scheduling and timing control for determined algo-
rithms.

3. Case Study - H.264/AVC Encoder

A single-chip design for H.264/AVC encoder [1] is
taken as an example to embody the design methodology.
By computational characteristic analysis, the H.264 en-
coder system can be separated into four different levels of
operations: low-level Integer Motion Estimation (IME),
mixed low- and medium-level Fractional Motion Estima-
tion (FME), medium-level Intra Prediction (IP), and
high-level entropy coding and deblocking filter. The system
is designed as a four-stage macroblock pipelining
architecture accordingly. Due to the huge amount of data
access of H.264 encoding algorithm, many on-chip
memories are used to reduce off-chip memory access.
Besides, interconnects between modules are decided to be
global or dedicated according to the data transmission
amount and regularity.

For the low-level and computation-hungry IME design,
three algorithm-level techniques are applied to reduce the
complexity but still maintain the superior encoding per-
formance after rate-distortion-complexity analysis is evalu-
ated. They are 1/2 computation subsampling, pixel trunca-
tion, and adaptive moving window. The architecture-level
optimization is achieved by array parallel processing, snake
scan data flow, and reuse of overlapped search area. The
first one is for real-time processing of HDTV sequences.
The second one can make the processing array fully utilized
and provide low on-chip memory bandwidth. The third one
is adopted to save 80% on-chip memory area and 87.5%
off-chip memory bandwidth.

For the medium-level IP design, partial distortion
elimination algorithm is applied to reduce the computation
complexity. As for the architecture-level optimization,
four-parallel reconfigurable computing elements are de-
signed for resource sharing of thirteen intra prediction
modes. The 4x4 and 16x16 interleaving schedule is used to
eliminate the processing bubble cycles for higher hardware
utilization.

4. New Design Challenges

Although hardware design for image and video coding
has been developed more than one decade, some new de-
sign challenges still exist because of higher coding per-
formance and demanded scalability. In the following, three
new design challenges are introduced: rate-constrained
coding flow, open-loop temporal prediction, and scalable
coding.

For increasing coding performance, the rate-distortion
optimization is becoming more and more important for
image and video coding systems. Especially, JPEG2000
Tier-2 rate-distortion optimization and rate-constrained
mode decision used in H.264 reference software are
well-known techniques to boost the coding gain. However,
The rate-constrained coding flow results in a sequential
processing nature, which indeed becomes a problem for
parallel processing. Good algorithm-level modification of
the rate-constrained coding flow is required for efficient
hardware implementation.

The hybrid texture and motion-compensated scheme
becomes the mainstream of video coding algorithm devel-
opment and international standardization in this decade.
However, the close-loop prediction scheme is hard to pro-
vide efficient scalable coding because there will be a seri-
ous drift error if any mismatch occurs between encoder and
decoder. Motion-Compensated Temporal Filtering (MCTF)
is a recent breakthrough of video coding scheme, which
breaks the close loop for efficient scalable coding. The
Scalable Video Coding [2] is currently under MPEG stan-
dardization process, which adopts MCTF as the core struc-
ture. The open-loop temporal prediction scheme requires a
group-of-picture (GOP) level operation. It results in longer
coding delay, larger off-chip storage, and higher off-chip
memory bandwidth.

Besides higher coding performance, the scalability is
also demanded by many multimedia applications. The
scalable entropy coding requires higher flexibility and more
data access than fixed data rate coding. For example,
JPEG2000 can provide spatial and quality scalable bit-
stream, and the reference software performs rate-distortion
optimization in an image-level access. These two require-
ments will make hardware acceleration more difficult
without any algorithm-level modification.

5. Conclusions

In this paper, general design methodologies for image
and video coding systems are explored in two directions:
system and module. Following these methodologies, effi-
cient hardware implementation can be derived systemati-
cally. The case study of H.264 encoder chip design is given
to illustrate each step of design methodologies. Three new
design challenges are also presented according to current
development of image and video coding systems.

References
[1] Yu-Wen Huang and et. al., “A 1.3TOPS H.264/AVC Sin-

gle-Chip Encoder for HDTV Applications,” in IEEE Interna-
tional Solid-State Circuits Conference, 2005, pp. 128-129.

[2] J. Reichel, H. Schwarz, and M. Wien, “Working Draft 1.0 of
14496-10:200x/AMD1 Scalable Video Coding,” ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 Q.6, Doc. N6901, Jan.
2005.

	typ_page1: -313-

