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1. Introduction 

Low cost and low power hardware with sufficiently 
high performance is extremely essential for image and 
video coding applications to be popular. Thus, efficient 
hardware implementations in VLSI are of vital importance. 
However, image and video algorithms usually require very 
high computational complexity. In this paper, the design 
methodologies for existing and future hardware architec-
tures of image and video coding are explored. The general 
design methodologies will be presented first, which include 
computational analysis, data access analysis, and 
rate-distortion-complexity analysis. Then, hardware archi-
tecture design concepts, including system architectures and 
module design, will be illustrated by use of a real design 
example for H.264/AVC encoder. Last of all, new chal-
lenges and possible future directions for image and video 
coding implementation will be discussed, which mainly 
come from rate-constrained coding flow, open-loop tempo-
ral prediction, and scalable coding.  
 
2. General Design Methodologies 

The optimization of hardware design for image and 
video coding systems can be achieved by considering the 
two different levels of architecture design: system design 
and module design. The former decides the whole system 
architecture and the relationship between modules. The 
latter is to optimize each module according to the allocated 
resource and constraints. 
System design 

The system architecture is usually designed by use of 
computation analysis and data access analysis that consider   
computing and data issues, respectively. The computation 
analysis is to classify the coding tools in the adopted coding 
algorithm into different level computational characteristics 
and choose the suitable implementation types, which in-
cludes characteristic and complexity analysis.  

Fig. 1 shows the computational characteristic analysis, 
which categorizes computation into three different levels of 
operations. The low-level operation represents highly regu-
lar computation and predictable computational flow. It is 
suitable to be implemented by dedicated hardware because 
its complexity is usually very high and the regular compu-
tation can be accelerated via parallel processing. The 
high-level operation represents highly irregular computa-
tion and unpredictable computational flow. However, its 
complexity is usually much lower than the low-level opera-
tion. Thus, it is suitable to be implemented using program-
mable design. Between these two extremes, the me-

dium-level operation is preferred to be implemented by use 
of configurable architecture that can be on-the-fly adapted 
according to data-dependent decisions.  

Fig. 1  Computational characteristic analysis and the corre-
sponding preferred implementation. 
 

Fig. 2  General memory hierarchy: off-chip memory, on-chip 
memory, and registers. 
 

The data access analysis is used to decide how data are 
transferred in the system. It analyzes how data should be 
stored for access and how data are transferred between 
modules. The storage and access issue is to optimize and 
balance the adopted memory hierarchy as shown in Fig. 2. 
Off-chip memory can provide highest cell density and ca-
pacity but suffers larger access power and lower access 
speed. On-chip memory is usually used as a cache to reduce 
the access of off-chip memory, but it may occupy signifi-
cant chip area. Registers can be used for the fastest and 
most flexible storage elements. On the other hand, the in-
terconnect issue is to decide how to allocate global bus and 
dedicated connection. The global bus provides flexible 
configuration and saves the interconnect area. The dedi-
cated interconnect is to provide high throughput and effi-
cient communication between highly related modules. 
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Module design 

After the system architecture is defined, every module 
can be designed by use of algorithm-level and architec-
ture-level optimization. The algorithm-level optimization is 
mainly to optimize the rate-distortion quality under given 
complexity constraints, or vice versa. More computation 
power results in better visual quality. The architecture-level 
optimization is to perform data flow smoothing and to bal-
ance scheduling and timing control for determined algo-
rithms.  
 
3. Case Study - H.264/AVC Encoder 

A single-chip design for H.264/AVC encoder [1] is 
taken as an example to embody the design methodology. 
By computational characteristic analysis, the H.264 en-
coder system can be separated into four different levels of 
operations: low-level Integer Motion Estimation (IME), 
mixed low- and medium-level Fractional Motion Estima-
tion (FME), medium-level Intra Prediction (IP), and 
high-level entropy coding and deblocking filter. The system 
is designed as a four-stage macroblock pipelining 
architecture accordingly. Due to the huge amount of data 
access of H.264 encoding algorithm, many on-chip 
memories are used to reduce off-chip memory access. 
Besides, interconnects between modules are decided to be 
global or dedicated according to the data transmission 
amount and regularity.  

For the low-level and computation-hungry IME design, 
three algorithm-level techniques are applied to reduce the 
complexity but still maintain the superior encoding per-
formance after rate-distortion-complexity analysis is evalu-
ated. They are 1/2 computation subsampling, pixel trunca-
tion, and adaptive moving window. The architecture-level 
optimization is achieved by array parallel processing, snake 
scan data flow, and reuse of overlapped search area. The 
first one is for real-time processing of HDTV sequences. 
The second one can make the processing array fully utilized 
and provide low on-chip memory bandwidth. The third one 
is adopted to save 80% on-chip memory area and 87.5% 
off-chip memory bandwidth. 

For the medium-level IP design, partial distortion 
elimination algorithm is applied to reduce the computation 
complexity. As for the architecture-level optimization, 
four-parallel reconfigurable computing elements are de-
signed for resource sharing of thirteen intra prediction 
modes. The 4x4 and 16x16 interleaving schedule is used to 
eliminate the processing bubble cycles for higher hardware 
utilization. 
 
4. New Design Challenges 

Although hardware design for image and video coding 
has been developed more than one decade, some new de-
sign challenges still exist because of higher coding per-
formance and demanded scalability. In the following, three 
new design challenges are introduced: rate-constrained 
coding flow, open-loop temporal prediction, and scalable 
coding. 

For increasing coding performance, the rate-distortion 
optimization is becoming more and more important for 
image and video coding systems. Especially, JPEG2000 
Tier-2 rate-distortion optimization and rate-constrained 
mode decision used in H.264 reference software are 
well-known techniques to boost the coding gain. However, 
The rate-constrained coding flow results in a sequential 
processing nature, which indeed becomes a problem for 
parallel processing. Good algorithm-level modification of 
the rate-constrained coding flow is required for efficient 
hardware implementation. 

The hybrid texture and motion-compensated scheme 
becomes the mainstream of video coding algorithm devel-
opment and international standardization in this decade. 
However, the close-loop prediction scheme is hard to pro-
vide efficient scalable coding because there will be a seri-
ous drift error if any mismatch occurs between encoder and 
decoder. Motion-Compensated Temporal Filtering (MCTF) 
is a recent breakthrough of video coding scheme, which 
breaks the close loop for efficient scalable coding. The 
Scalable Video Coding [2] is currently under MPEG stan-
dardization process, which adopts MCTF as the core struc-
ture. The open-loop temporal prediction scheme requires a 
group-of-picture (GOP) level operation. It results in longer 
coding delay, larger off-chip storage, and higher off-chip 
memory bandwidth. 

Besides higher coding performance, the scalability is 
also demanded by many multimedia applications. The 
scalable entropy coding requires higher flexibility and more 
data access than fixed data rate coding. For example, 
JPEG2000 can provide spatial and quality scalable bit-
stream, and the reference software performs rate-distortion 
optimization in an image-level access. These two require-
ments will make hardware acceleration more difficult 
without any algorithm-level modification. 
 
5. Conclusions 

In this paper, general design methodologies for image 
and video coding systems are explored in two directions: 
system and module. Following these methodologies, effi-
cient hardware implementation can be derived systemati-
cally. The case study of H.264 encoder chip design is given 
to illustrate each step of design methodologies. Three new 
design challenges are also presented according to current 
development of image and video coding systems.  
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