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1. Introduction 
The quantum drift-diffusion equations, also known as the 
density-gradient (DG) equations, are a set of equations 
which model quantum effects in nanostructures such as 
nano-scale MOS capacitors, MOSFETs, and 
Double-Gate MOSFETs [1-5]. The complex DG 
equations are usually solved numerically. However, the 
numerical calculations require highly sophisticated 
methods [2, 5] and expensive computation time, so that 
they are not suitable for circuit simulations. In this work, 
we solve the DG equations analytically using a 
perturbation method. Our fully analytical solutions 
successfully reproduce major characteristics of a MOS 
structure without any fitting parameters. With these 
results one can reproduce quantum effects 
instantaneously without any expert knowledge of 
numerical computation. 
 
2. Calculation Method 
In the DG equations, a quantum correction term is added 
to the conventional drift-diffusion equations. The 
coefficient of the quantum correction term contains ħ, 
which can be regarded as a small parameter. The 
perturbation approach decomposes the DG equations into 
a set of simpler ones by expanding the solutions in terms 
of the small parameter [6]. The solutions give results 
equivalent to those of the numerical approach, with a 
small error due to neglecting the higher order terms. 
 
3. Results 
Table 1 summarizes the formulae for the potential, ψ, 
and electron concentration, n, in a MOS capacitor as 
functions of distance from Si/SiO2 interface, x. Only the 
1st order terms of the perturbation expansions are given. 
Inner solutions are valid only in the vicinity of the 
Si/SiO2 interface, and the outer solutions are valid 
outside the inner region. Uniform solutions can be 
obtained by analytically blending the inner and outer 
solutions. The quantity δ is a small parameter containing 
ħ, and λ is the doping density divided by the intrinsic 
carrier density. The potential ψ and quasi-Fermi level φn 
are normalized by ln[λ] kBT/e, and distance x is 
normalized by LD Sqrt[2ln[λ]/λ], where LD is the intrinsic 
Debye length. The quantities α0 and γ0 are functions of 
surface potential ψs , which are determined by the 
equations described in [7, 8]. The constants ψ1s and C1 
are functions of ψs, λ, α0, γ0, and other material/structural 
parameters. 
Figures. 1, 2, 3, and 4 show the potential profile, electron 

density profile, and the mobile charge density obtained 
from our analytical solutions (thick solid curves) and 
Schrödinger-Poisson (SP) self-consistent solutions (open 
circles). The value of the quantum correction coefficient 
was taken from [2]. Classical solutions (dashed curves) 
and SP solutions were calculated using SCHRED [9]. 
These figures show excellent agreement between the SP 
solutions and our analytical solutions. Similar accuracy 
was found at other oxide thickness and doping densities. 
It is important to note that no fitting parameter is used in 
our calculation; our formulae are fully analytical 
descriptions of the solutions to the DG equations. For this 
reason, DG calculations can be easily done much faster 
than the numerical approach, while maintaining excellent 
agreement with SP solutions. 
 
4. Conclusion 
We have found analytical solutions to the quantum 
drift-diffusion (density-gradient) equations in MOS 
capacitors, which successfully reproduce 
Schrödinger-Poisson solutions without any fitting 
parameter. Our analytical solutions dramatically reduce 
the calculation time of device/circuit simulators. The 
same method can be used to model other structures, e.g. 
planar and double-gate MOSFETs, and these devices will 
be addressed in future work. 
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Fig. 1     Potential profile calculated using classical model, 
Schrödinger-Poisson solver SCHRED [9], and our analytical 
solutions. Parameters used are shown in the figure.

Fig. 2     Electron density profile at Vg = 1.0V. The 
values of parameters were same as those used in Fig. 1

Fig. 3     Log plot of the electron density profiles at Vg = 0.4, 1.0, 
and 1.8V, showing excellent agreement at wide range of gate 
voltages.

Fig. 4     Mobile charge density as a function of gate voltage, which 
is obtained by integrating the electron density in the inversion layer. 
This quantity corresponds to the source/drain current in MOSFETs.
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Table. 1     Analytical solutions of potential and electron density profiles in a MOS capacitor in the quantum regime. Inner solutions are 
valid only near the Si/SiO2 interface, and outer solutions are valid elsewhere. These solutions are smoothly blended to give a uniform 
solution. The quantity δ is small parameter containing ħ. The quantity λ is given by NA/ni, and α0 and γ0 are functions of surface potential 
ψs, as described in [7,8]. Potential and position are normalized by ln[λ] kBT/e, and LD Sqrt[2 ln[λ]/λ], respectively, where LD is the 
intrinsic Debye length. The constants ψ1s and C1 are functions of ψs, λ, α0, γ0, and other material/structural parameters.
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