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1. Introduction
A critical process governing amorphous organic

electronic devices is charge transport, and for this
reason the theory of charge transport in disordered
molecular solids has been the subject of intense re-
search over the last thirty years. Extensive Monte
Carlo simulations have been performed to obtain
the equilibrium charge carrier mobility as a func-
tion of field in the limit of negligible charge carrier
concentration (see e.g. [1] and [2]). Sophisticated
analytic theories for equilibrium charge carrier mo-
bilities as a function of carrier concentration in the
low field limit have also been reported (see e.g. [3]).

However, many amorphous organic electronic
devices (e.g. organic light emitting devices and
photodetectors) operate in a regime where both
high fields and high carrier concentrations are
present. As a result, to properly model current
flow in such devices one must take into account
the influence of both factors when calculating car-
rier mobilities. We report what are to our knowl-
edge the first Monte Carlo simulations of equilib-
rium charge carrier mobilities in amorphous or-
ganic solids as a fucntion of both field and car-
rier concentration. We also compare these Monte
Carlo calculations with existing analytic methods
and find that the analytic calculations have signif-
icant errors, attributable to: (1) inadequate cor-
rection of hopping cycles; and (2) improper use of
Fermi statistics.

2. Calculation Method
We analyze charge transport in amorphous or-

ganic materials assuming as model of incoherent
hopping between molecular sites subject to ener-
getic disorder. We employ the Miller-Abrahams[4],
field–assisted hopping rate to calculate the rate
of transfer of a charge carrier to an unoccupied
molecule through a displacement ~R, subject to an
applied field ~F , and having charge q:

Γhop =
1

τhop
exp[−γR]χ(∆E) (1)

where ∆E is the difference in the site energy levels,

χ(∆E) ≡
{

1 if ∆E∗ < 0
exp[−∆E∗/kBT ] if ∆E∗ ≥ 0

(2)
kBT is the thermal energy, and,

∆E∗ ≡ ∆E − q ~R · ~F . (3)

We model the impact of non-zero carrier concen-
tration by prohibiting transfer to sites that are al-
ready occupied.

We assign the site energies using either the Gaus-
sian Disorder Model (GDM)[1] or the Correlated
Disorder Model (CDM)[5]. In both cases, the
charge carrier density of states, g(E), is a Gaus-
sian function:

g(E) = Nmol
1√
2πσ

exp[−E2/2σ] (4)

where Nmol is the density of molecular sites. For
the GDM, the site energies are assigned randomly.
For the CDM, the site energies are subject to spa-
tial correlations arising from the interaction be-
tween the charge carrier and randomly oriented
surrounding dipoles, as previously described by
Novikov et al.[5].

We apply this model to the calculation of equi-
librium charge carrier mobilities using Monte Carlo
simulations. Cubic lattices of 40x40x40 sites are
used in this study, with an intersite spacing of 1
nm (yielding Nmol = 1x1021cm−3.) A random
fraction of the lattice sites are initially populated
with charge carriers. The simulation then proceeds
in time steps until the average mobility of the car-
rier population (calculated by dividing the average
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Figure 1: Equilibrium mobility as a function of
field and carrier concentration, n, under the GDM
and CDM for σ = 3kBT , calculated by Monte
Carlo simulation.

carrier velocity by the applied field) is found to
equilibrate.

3. Results and Analysis
Shown in Fig. 1 are our calculations of the equi-

librium mobility as a function of field for three car-
rier concentrations, n = 0, n = 1x1018cm−3, and
n = 1x1019cm−3, for both the GDM and CDM
with σ = 3kBT . We have performed calculations
for a range of other σ and n values and obtained
similar results. We find that increasing n univer-
sally increases the equilibrium mobility, and that
this effect is more dramatic for larger σ and smaller
fields. From these simulation results, we have also
developed approximate empirical relationships for
the mobility as a function of field and carrier con-
centration over the Poole-Frenkel regime for both
the GDM and the CDM.

To our knowledge, the only analytic treatment
of the charge carrier mobility in amorphous or-
ganic materials as a function of carrier concentra-
tion at high fields is due to Roichman et al.[6].
In this report, the authors employ a simple vari-
able range hopping model to calculate equilibrium
mobilities under the GDM. The impact of ap-
plied field is treated through the same field-assisted
Miller-Abrahams hopping rate that we have used.
The impact of the carrier concentration is simi-
larly introduced by prohibiting transfer to occu-
pied states, and the equilibrium condition is ex-
pressed by using Fermi statistics to described the
state occupancy.
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Figure 2: Comparison of equilibrium mobility as a
function of field and carrier concentration, n, under
the GDM for σ = 3kBT , calculated by Monte Carlo
simulation (black lines and symbols) and using the
analytic treatment reported in [6].

We compare the results of this analytic treat-
ment with our Monte Carlo calculations, and find
that the the analytic results are significantly dif-
ferent from the Monte Carlo results (see Fig. 2.)
We find that this disagreement arises from two
shortcomings of the analytic treatment reported
by Roichman et al.[6]. First, the method does not
account for the occurance of hopping cycles (i.e.
sequences of hops which return a carrier to a pre-
viously visited site). Second, the method assumes
Fermi statistics, which is found to be inconsistent
with charge carrier hopping in the presense of an
applied field.
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