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1. Introduction  
There is a growing requirement for high-power and 

high-efficiency amplifiers in use of C-band applications, 
such as fixed point-to-point access systems, next-
generation mobile communication systems, and satellite 
communication systems. Although C-band high-power 
amplifiers have already been developed with GaAs-based 
FETs [1, 2], there are still needs for the higher power with 
smaller size. GaN-based FETs are expected to meet these 
needs because of extremely high power density [3, 4]. We 
have developed the single-chip GaN-FET amplifiers and 
reported the down-sizing of 60-W amplifiers to half of the 
GaAs-based FET amplifiers [5] and the record 
continuous-wave (CW) output power of 100 W as solid-
state power amplifiers [6] in C band. Although the output 
powers of 140 W [7] and 174W [8] are reported with 
multi-chip GaN-FET amplifiers under pulsed operation 
conditions, there are no report on over 100 W CW 
amplifiers. 

In this work, we have designed the 2-chip GaN-FET 
amplifiers using the large-signal matching impedance and 
achieved the CW output power of 160 W at 5 GHz. 

2. Amplifier design 
The developed amplifier is composed of the input and 

output matching circuits and a couple of GaN-FET chips. 
The GaN-FET device is fabricated on a SiC substrate, 
featuring the field-modulating plates and recessed-gate 
structure [5]. The fabricated FET exhibits a maximum 
drain current of 0.7 A/mm with a pinch-off voltage 
of -2.1 V. The gate-drain breakdown voltage defined 
at -1mA/mm is 200 V. For high-power evaluation, the 
backside of the FET was thinned to 50µm by mechanical 
polishing. The gate width of the single GaN-FET chip 
was chosen to be 24 mm [5]. The chip size is 4.0 mm 
× 0.8 mm. 

To design the matching circuits, we measure the 
optimum impedance for the 400-µm-wide FET at 5 GHz 
with a drain voltage of 40 V, by using an on-wafer load-
pull system. For the input-matching-circuit design, the 
source-pull measurement is carried out under the small 
signal condition (input power of 0 dBm). The source 
impedance is scanned to find the maximum gain point, 
which is defined as the optimum input impedance. Its 
value is 8.4+25.3j Ω. The load-pull measurement is 
carried out under the large signal condition (input power 

of 24 dBm) with fixing the input impedance to the 
optimum value for the output-matching-circuit design. 
 Fig.1 shows the contour map for the output power 
(Pout) and the power-added efficiency (PAE).  At the 
maximum-Pout point, the power-added efficiency drops 3 
points as compared to the maximum value. On the other 
hand, the output power at the maximum-PAE point is as 
high as the maximum output power. Thus, the maximum-
PAE point is determined to be the optimum output 
impedance. Its value is 208+87.4j Ω. Fig.2 shows the 
power performance for the 400-µm-wide device with the 
optimum input and output impedance. The saturated 
output power of 35.2 dBm, the linear gain of 13.5dB and 
the power-added efficiency of 48% are obtained with a 
drain voltage of 40 V. 
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Fig.1 Contour map for the output power (black lines) and 
power-added efficiency (red lines). 
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Fig.2 Output power, linear gain and power-added efficiency for 
400-µm-wide device as a function of input power. 
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Fig.3 shows the equivalent circuit of the developed 
amplifier. The optimum input and output impedances for 
the 400-µm-wide device are scaled to those for the 24-
mm-wide device. To reduce the impedance 
transformation ratio, we use single-stage LC low-pass 
filters and a divider composed of single-stage quarter-
wave transformers for the input matching circuit and a 
combiner composed of 2-stage quarter-wavelength 
transformers for the output matching circuit. The divider 
and the combiner are formed on a single alumina 
substrate to avoid the inter-substrate losses.  

 
 
 
 
 
 
 
 
 
 

 
3. Amplifier performance 
 Fig.4 shows the measured small-signal gain, input and 
output return losses for the developed 2-chip GaN-FET 
amplifier with a drain voltage of 40V. A small-signal gain 
of 8 dB is obtained at a frequency of 5.0 GHz. The input 
and output return losses are -14 and -11 dB, respectively. 
The CW power performance is examined at a frequency 
of 5.0 GHz. Fig. 5 shows the output power, the gain and 
power-added efficiency as a function of the input power 
with a drain voltage of 50 V. The developed GaN-FET 
amplifier demonstrates a saturated output power of 161 W 
with a 10.7 dB linear gain and a 34.2% power-added 
efficiency. To the best of our knowledge, this is the 
highest CW output power achieved from solid-state 
power amplifiers at this frequency band. 

4. Conclusion 
A C-band high-power amplifier is successfully 

developed with 2-chip 24-mm-wide GaN-FETs. At 
5.0GHz, the fabricated GaN-FET amplifier delivers a 
161 W CW output power with 10.7 dB linear gain and 
34.2% power-added efficiency with a drain voltage of 
50 V. To the best of our knowledge, this is the highest 
CW output power achieved from a solid-state power 
amplifier at C-band. 
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Fig.3 Equivalent circuit for 2-chip GaN-FET power amplifier. 
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Fig.5 Output power, linear gain and power-added efficiency for 
2-chip GaN-FET amplifier as a function of input power. 
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Fig.4 Small-signal characteristics for 2-chip GaN-FET 
amplifier 
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