Gate Workfunction Engineering of Bulk FinFETs for Sub-50 nm DRAM Cell Transistors

Ki-Heung Park, Kyoung Rok Han, Young Min Kim, and Jong-Ho Lee School of EECS, Kyungpook National University 1370 Sankyuk-Dong, Buk-Gu, Daegu, 702-701 Korea Phone: +82-53-950-6561 E-mail: jongho@ee.knu.ac.kr

1. Introduction

As the DRAM cell size shrinks to sub-50 nm, it becomes critical issue to gain sufficient on-current, low voltage operation, and low off-state leakage current ($I_{\rm off}$) [1]-[4]. The fabricated FinFETs on the bulk Si wafers is one of the candidates to overcome the above issues. Damascene FinFET structure was proposed with local channel implantation scheme [1]. The cell transistors using n^+ poly gate has a low $V_{\rm th}$, resulting in high $I_{\rm off}$. The p^+ poly gate gives high $V_{\rm th}$, but high $I_{\rm off}$ due to GIDL. Therefore, now it is very difficult to get reasonable DRAM cell operation with n^+ or p^+ poly gate in the sub-50 nm regions.

In this work, we propose a new p^+/n^+ gate FinFETs, and consider device design of the sub-50 nm cell transistors in terms of GIDL using 3-D device simulator.

2. Device Structure and Simulation

The proposed p^+/n^+ poly gate FinFET is shown schematically in Fig. 1. $H_{\rm fin}$ and $W_{\rm fin}$ stand for the gate height and fin body width, respectively. The gate consists of poly-Si with two different work functions. The $L_{\rm m}$ and $L_{\rm s}$ represent main p^+ poly gate length and subsidiary n^+ poly gate length, respectively. The $x_{\rm j}$ is source/drain junction depth defined as a depth from the top of the fin body. In this work, the $H_{\rm fin}$ and the $x_{\rm j}$ are fixed at 50 nm and 60 nm, respectively. Gate oxide thickness ($T_{\rm ox}$) is fixed at 3 nm. The uniform body doping is 1×10^{17} cm⁻³ and a local doping which is characterized by Gaussian profile with a peak doping of 3×10^{18} cm⁻³ is adopted just under the LDD $x_{\rm j}$ to suppress punchthrough. In 3-D device simulation, we adopted band-to-band (BTB) tunneling model to see drain leakage current including GIDL component.

3. Results and Discussion

Fig. 2 shows the 2-D I_D - V_{GS} characteristics as parameters of W_{fin} and LDD concentration. To exclude I_{off} change due to DIBL, we used n⁺ poly gate devices with an $L_{\rm g}$ of 100 nm. Those devices have a peak body doping (3×10¹⁸ cm⁻³) at the center between source and drain. GIDL current increases as the LDD doping increases. With decreasing W_{fin} , GIDL current decreases due to the decrease of electric field in the LDD region overlapped by the gate. Fig. 3 shows I_D - V_{GS} characteristics with the L_s at fixed L_g of 50 nm and W_{fin} of 20 nm. The n^+ only or p^+ only gate device gives larger $I_{\rm off}$ than 1 fA. By controlling $L_{\rm s}$, we can obtain a minimum I_{off} by ~10⁻¹⁷ A at V_{GS} =0 V and V_{DS} =1.5 V. The extracted I_{off} 's and V_{th} 's are shown in Fig. 4. As the $L_{\rm s}$ increases from 0 nm to ~25 nm, the $V_{\rm th}$ decreases very slowly and then decreases significantly. Optimum L_s is ~15 nm at given $L_{\rm g}$ of 50 nm and $W_{\rm fin}$ of 20 nm. It is needed to

check internal physics to understand $I_{\rm off}$ variation. Fig. 5 shows the surface potential profile in the channel region along the cut line located near the top silicon region of fin body. We can observe different slope in the $L_{\rm s}$ region for the p^+/n^+ gate device. The area under the p^+ poly gate of the gate FinFET is essentially screened from the drain-potential variation [5]. Fig. 6 shows the electric field along the Si channel near the top silicon surface. Compared to p^+ gate device, p^+/n^+ gate gives lower peak electric field, which leads to lower GIDL. Fig. 7 shows the electric field profiles obtained at the same position as that in Fig. 6. The $L_{\rm s}$ changes from 5 nm to 15 nm. As the $L_{\rm s}$ increases, the peak electric field inside channel decreases, and the electric field near drain junction decreases. Fig. 8 shows I_{on} 's of the p^+/n^+ gate FinFETs with L_s/L_g (0.1, 0.2, and 0.3) and W_{fin} as a parameter of L_g at $V_{DS} = V_{GS} = 1.5$ V. With increasing L_s/L_g , the $I_{\rm on}$ increases due to $V_{\rm th}$ reduction. The $I_{\rm on}$ also increases as the W_{fin} increases because of DIBL increase. The maximum I_{on} is about 35 μ A when based on the I_{off} requirement (< 1 fA) shown in Figs. 9 to 11. The I_{off} 's by changing W_{fin} and L_{s} at a fixed L_{g} are shown in Figs. 9 to 11, where solid symbols meet the $I_{\rm off}$ requirement. To guarantee $I_{\rm off}$ less than 1 fA, the $L_{\rm s}$ at $L_{\rm g}$ =30 nm should be less than ~6 nm for a given W_{fin} of 15 nm. 40 nm devices require W_{fin} less than 20 nm for given L_s of 4 nm to 12 nm to meet the requirement. The devices with an $L_{\rm g}$ of 50 nm show $I_{\rm off}$'s less than 1 fA for the L_s of 5 nm to 15 nm at given W_{fin} of 10 nm to 30 nm. If the $L_{\rm s}$ goes to 0 or 50 nm, then the $I_{\rm off}$ becomes larger than 1 fA. In Table 1, shown are DIBL and SS characteristics of the proposed devices. The 30 nm devices need the W_{fin} less than ~15 nm to keep the DIBL less than 100 mV/V. For 40 nm devices, the W_{fin} needs to be less than ~20 nm to keep the DIBL less than 100 mV/V.

4. Conclusion

We have proposed a new p^+/n^+ gate FinFET and considered device design for sub-50 nm DRAM cell transistors. Based on the $I_{\rm off}$ requirement (< 1 fA), we suggested reasonable n^+ subsidiary gate length and fin body width for the cells with $L_{\rm g}$'s of 30, 40, and 50 nm.

Acknowledgements

This work was supported by "The National research program for the 0.1 Tb Non-volatile Memory Development sponsored by Korea Ministry of Science & Technology" in 2006.

References

- [1] Y.-S. Kim et al., IEDM Tech. Dig., p. 325, 2005.
- [2] C. H. Lee et al., Symp. on VLSI Tech., 13.3, June 2004.
- [3] T. Park et al., IEDM Tech. Dig., p. 27, 2003.
- [4] R. Katsumata et al., Symp. on VLSI Tech., 5B-3, .June 2003.
- [5] Wei Long et al., IEDM Tech. Dig., p. 549, 1997.

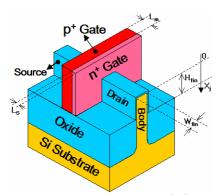


Fig. 1. 3-D schematic view of p^+/n^+ gate FinFET. $H_{\rm fin}$ and $W_{\rm fin}$ stand for the fin height and fin body width, respectively. Here, $L_{\rm g}$ is given by $L_{\rm m}+L_{\rm s}$, where $L_{\rm s}$ is the length of n^+ poly gate.

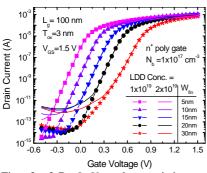


Fig. 2. 2-D I_D - V_{GS} characteristics as parameters of $W_{\rm fin}$ and LDD doping. The data for LDD concentrations of 1×10^{19} cm⁻³ and 2×10^{19} cm⁻³ are represented by symbols and simple lines, respectively.

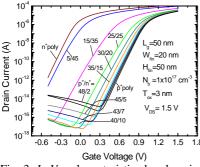


Fig. 3. $I_{\rm D}$ - $V_{\rm GS}$ characteristics by changing the $L_{\rm s}$ at a fixed $L_{\rm g}$ of 50 nm. Here the $W_{\rm fin}$ is fixed at 20 nm.

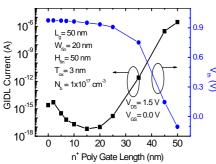


Fig. 4. $I_{\rm off}$ and $V_{\rm th}$ versus the $L_{\rm s}$ at a fixed $L_{\rm g}$ of 50 nm. $I_{\rm off}$ values were captured at $V_{\rm GS}$ of 0 V and $V_{\rm DS}$ of 1.5 V.

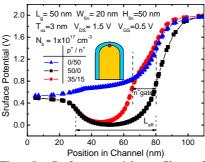


Fig. 5. Surface-potential profiles of n^+ -poly, p^+ -poly and p^+/n^+ -poly gates at a fixed $L_{\rm g}$ of 50 nm. The insert shows a cutting point near the silicon interface on the cross-sectional view of the fin body.

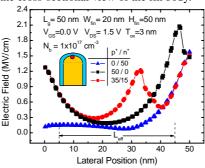


Fig. 6. Electric-field profiles along the channel at the silicon top region of fin body for different L_s 's.

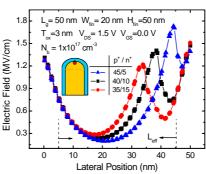


Fig. 7. Electric-field profiles along the channel at the silicon top region of fin body. The $L_{\rm m}$ and $L_{\rm s}$ are changed at a fixed $L_{\rm g}$ of 50 nm. Given $V_{\rm GS}$ and $V_{\rm DS}$ are 0 V and 1.5 V, respectively.

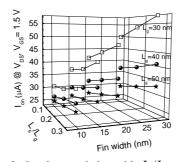


Fig. 8. $I_{\rm on}$ characteristics with $L_{\rm s}/L_{\rm g}$ and $W_{\rm fin}$ as a parameter of $L_{\rm g}$. The rectangle, circle and star symbols represent the data for $L_{\rm g}$ = 30 nm, $L_{\rm g}$ = 40 nm and $L_{\rm g}$ = 50 nm, respectively.

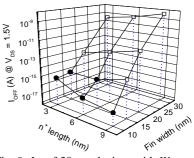


Fig. 9. I_{off} of 30 nm devices with W_{fin} and L_{s} . The solid symbols represent the I_{off} 's less than ~1 fA.

Fig. 10. $I_{\rm off}$ of 40 nm devices with $W_{\rm fin}$ and $L_{\rm s}$. The solid symbols represent the $I_{\rm off}$'s less than ~1 fA.

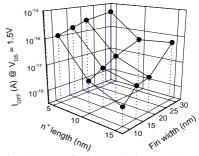


Fig. 11. $I_{\rm off}$ of 50 nm devices with $W_{\rm fin}$ and $L_{\rm s}$. The solid symbols represent the $I_{\rm off}$ s less than ~1 fA.

Table 1 Electrical characteristics of the FinFET with the W_{fin} and L_s

(a) L _g - 30 IIII										
	DIBL (mV/V)			SS (mV/dec)						
W _{fin} L _s	3 nm	6 nm	9 nm	3 nm	6 nm	9 nm				
10 nm	59.93	63.1	66.69	69.05	69.2	69.78				
15 nm	112.4	117.2	118.6	77.41	77.6	78				
20 nm	181.4	187.6	188.3	88.47	89.99	93.63				
30 nm	349.6	357.24	363.8	129.1	134.5	149.5				

(b) $L_{\rm g}$ = 40 nm										
	DIBL (mV/V)			SS (mV/dec)						
W _{fin} L _s	4 nm	8 nm	12 nm	4 nm	8 nm	12 nm				
10 nm	28.21	31.03	35.24	64.4	64.75	65.06				
15 nm	52.96	57.03	62.27	69.39	69.78	71.07				
20 nm	84.13	90.34	97.93	76.35	76.82	77.94				
30 nm	155.17	168.28	178.62	93.79	95.23	96.93				