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1. Introduction
As the size of a Si-MOSFET (Metal-Field-Effect Field
Effect Transistor) decreases, electronic transport of car-
riers is expected to change from the diffusive region to the
ballistic region[1]. In this era, the gate insulator SiO2 is
replaced by higher dielectric constant materials (high-k
materials), in which trap states cannot be avoided. Trap
sites degrade device performance such as flat band volt-
age shifts. However, their effect on ballistic transport has
not yet been clarified. On the other hand, the effect of
side-trap states on infinite quantum wire (QW) is treated
as Fano-Kondo (FK) problem and has attracted great in-
terest where conductance is suppressed as a result of a
destructive interference at T <TK (Kondo temperature)
[2-4]. The infinite QW without the source and drain is
not the situation of the future ballistic transistors. Here,
we investigate the effect of trap site on ballistic transis-
tor by Keldysh Green’s function method based on slave-
boson mean field theory (SBMFT)[5,6].

2. Formulation
We model the ballistic transistor as shown in Fig. 1
where two potential barriers exist between the electrodes
(source and drain) and the ballistically conducting chan-
nel. The tunneling rates are written as ΓL and ΓR. This
model can also be used for the Schottky transistors[7].
In the SBMFT, an infinite on-site Coulomb interaction
for each trap site is assumed, which means that at most
one excess electron is permitted in the trap site[5,6].

One trap site – First we consider the effect of one trap
site (Fig.1(a)). The Hamiltonian is written in terms of
slave-boson mean fields as H = H

(I)
chan + Helec + Htran.

H
(I)
chan represents the conducting channel and trap site:

H
(I)
chan =

∑
k

∑
s=↑,↓

Ekc†kscks + εfd†sds

+
√

z
∑

k

∑
s=↑,↓

[Vdd
†
scks+h.c]+(εf−ED)(z − 1) (1)

Helec represents the two electrodes written as Helec =∑
α=L,R

∑
ks Ekαfα†

ks fα
ks, and Htran describes transfer-

ence of electrons between different regions, given by
Htran =

∑
α=L,R

∑
k1k2s(t

α
k1k2

c†k1sf
α
k2s + h.c.). fα

ks(α =
L,R), cks and ds are, respectively, the annihilation elec-
tron operator for both electrodes, the channel region and
the trap site. Ekα and ED are the energies for the elec-
trodes and trap site, respectively. εf is a quasiparticle
trap energy. z is a mean value of the boson operator,
showing the average vacancy rate in the trap site. εf and
z are determined by self-consistent equations shown be-
low. tαk1k2

and Vd are the tunneling matrix between the

channel region and the electrodes and that of conducting
region and the trap site, respectively. This approxima-
tion is valid below TK ≈ D exp(EDD/(2V 2

d π)) (D is a
band width) [5].

The current ID between the source and drain is
described by Keldysh Green’s function as ID =
(2e/h)

∑
kk′

∫
dωRe{tLkk′G<

ck′fL
k

(ω)} where G<
ck′fL

k

(t, t′)

≡ i〈fL†
k (t′)ck′(t)〉 [8](we neglect spin dependence). By

using a relation G< = gr
1g

<
2 + g<

1 ga
2 when G = g1g2,

we can describe G<
ck′fL

k

(t, t′) by elementary Green’s func-
tions. First, the current without trap is derived as I0 =
g0VD (VD is a drain voltage) where g0 = e

h
y0

(1+y0)2
ΓLΓR

γ .

y0 ≡ πNc(EF )γ is a number of channel electrons in the
energy width of γ (γ = (ΓL + ΓR)/2 and Nc(EF ) is a
density of states in the channel region at Fermi energy
EF ). Note that the energy dispersion Ek in the channel
region has continuum k dependence. This is in contrast
with that of a quantum dot discussed in Ref.[8,9] where
band mixing of discrete energy-levels in the quantum dot
can be neglected. ID with a trap site is given as

ID = g0

∫ D

−D

dω
(ω − εf )2

(ω − εf )2 + z2η2
(fL(ω)− fR(ω)) (2)

where η = η0y0/(1 + y0) with η0 = V 2
d /γ. fL(ω) ≡

(exp((ω−EF + eVD)/T )+ 1)−1 and fR(ω) ≡ (exp((ω−
EF )/T )+ 1)−1 are Fermi distribution functions of the
left and right electrodes (Boltzmann’s constant kB = 1).
This formula is the main result of this paper and shows
that the existence of trap site decreases ID greatly when
the energy of carrier electrons is close to the trap site
energy. Compared with the infinite wire case[2,3], we
can see that the coupling strength η is modified by y0

and is a function of ΓL and ΓR.
The self-consistent equations for εf and z are given as

2
∫ D

−D

dω

π

η(ω − εf )
(ω − εf )2 + z2η2

F1(ω) = ED−εf (3)

2
∫ D

−D

dω

π

zη

(ω − εf )2 + z2η2
F1(ω) = 1−z (4)

where F1(ω) ≡ {y0[ΓLfL(ω) + ΓRfR(ω))]/(ΓL + ΓR) +
fc(ω)}/(1+y0) and fc(ω) ≡ (exp((ω−EF +eVD/2)/T )+
1)−1. In the γ → 0 limit, these equations reduce to those
given in Ref.[5]. As shown below, the VD dependence of
εf and z is week. In such case, we can analytically express
conductance G = dID/dVD at VD = 0 and T = 0:

G = g0
(EF − εf )2

(EF − εf )2 + z2η2
(5)
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This formula says that G has a dip structure when εf

coincides with EF .
Two trap sites – As discussed in Ref.[5,6], the Hamilto-
nian of the channel part with two traps, H

(II)
chan, is de-

scribed as the summation of two independent parts con-
sisting of symmetric (P = +) and antisymmetric(P =
−) parts, if there is no interaction between the two
traps. Correspondingly, Hamiltonian with electrodes is
described by the two independent parts. Then ID and
G consist of two independent parts. In particular G at
T = 0 is

G = g0

∑
P=±

(εf − EF )2

(εf − EF )2 + z2η2
P

(6)

where ηP = ηP0y0/(1 + y0) with ηP0 = (NP Vd)2/γ and
NP ≡ (1+P sin(kF R)/kF R)/2 (R is the distance between
the two traps). Thus, the dip in G is intrinsic and can
be described in a similar fashion to the single trap case.

3. Numerical calculations
Figure 2 shows the conductance dID/dVD at VD = 0.01γ
when coupling constant η0 is changed. We can see a deep
dip structure near EF . This is the result of the interfer-
ence between the channel electrons and the trap site (FK
effect). Figures 2 (a) and (b) also show that the result
is irrelevant to the value of y0. Here, the minimum TK

is larger than T = 0.01γ. Figure 3 shows, when the dip
appears, the trap site is occupied by an electron (z ∼ 0)
and trap site energy εf increases. Figure 4 shows ID-VD

curve at ED = −1.2γ where the dip appears. We can

see that, as η0 increases, ID decreases rapidly. This in-
dicates that the existence of trap site reduces the drive
current. In Fig.5, we calculate G from Eq.(5) using εf

and z in Fig.3. We found that the analytical formula
Eq.(5) approximately reproduces the numerically differ-
entiated results of Fig.2 (a).

Let us consider a simple estimation. The numerical
calculations show that the clear dip can be seen when η0

∼ γ. If we take D ∼ (h̄2/2m)(3π2n) with effective mass
m = 0.2m0 (m0 is a free electron mass) and the chan-
nel electron density n = 10−17cm−3, then D ∼ 4meV.
When γ is estimated from ID ∼ eγ and I = 0.1µA,
h̄γ ∼ 0.4meV. Then a broad dip structure would be ob-
served at room temperature for the traps whose coupling
energy is 0.4 meV.

4. Conclusion
We studied the effect of trap sites on transport of ballistic
transistor and showed that conductance has an intrinsic
dip as a result of the interference effect. This is an inter-
esting interplay between physics and engineering devices.
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Fig. 1: Side-trap states near the conducting channel. (a) 
One trap site case. (b) Two trap sites case. Channel 
electrons can be trapped by these sites. Potential barriers 
are assumed to exist between the electrodes and the 
channel region.

Fig. 2: Conductance dID/dVD for a trap site (Fig.1 (a)) as 
a function of trap site energy ED at VD=0.01γ. (a) y0=100. 
(b) y0=5. D=6γ, EF=0 and T=0.01γ. In this paper, we set 
ΓL=ΓR, and take γ=(ΓL+ΓR)/2 as an energy unit.

Fig. 4: ID-VD for a trap site 
(Fig.1 (a)). ED =-1.2γ,  y0=100, 
D=6γ, EF=0 and T=0.01γ.

Fig. 5: Eq.(5) as a function of ED, 
where self-consistent z and εf are 
used. Compared with Fig.2, we 
found that Eq.(5) is effective. 

Fig. 3: Solutions for the self-consistent equations Eq.(3) 
and Eq.(4) as a function of ED. (a) z and (b) εf.  
Parameters are the same as those in Fig.2. As z 
becomes closer to 0,  the trap site is occupied with 
higher probability.
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