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Abstract  Ultra-thin SiN MIM decoupling capacitor (DCC) has been developed in the Cu BEOL with  high capacitance up to 7 fF/m2. 
The surface property of the polycrystalline-TiN bottom electrode (BE) affects SiN dielectric reliability, and the smoothed surface by thin Ta 
insertion improves TDDB reliability by approximately 6000 times. 

 
1. Introduction 

To suppress power-line noises of high-speed MPUs (1, 
Metal-Insulator-Metal (MIM) capacitor in the Cu-BEOL, 
instead of MIS capacitors with large leakage currents through 
the extremely thin gate-oxide, is needed as decoupling 
capacitors (DCC).  Thin SiN film with k~7(2 is a candidate 
for the dielectric of the MIM because of high process 
compatibility with the current LSI fabrication. However, 
capacitance of the previously reported SiN MIM is limited to 
~2 fF/m2 (3, which is not sufficient for the latest MPUs 
(Table 1). 

In this work, ultra-thin SiN film was employed to obtain 
large capacitance over 5 fF/m2. In order to improve 
dielectric reliability, the surface property of the 
polycrystalline-TiN bottom electrode is discussed.  
 

2. Experimental 
Figure 1(a) shows the illustration of the SiN-MIM capacitor, 

in which both top and bottom electrodes are connected to the 
upper power/ground lines. As shown also in Fig. 1(b), effects 
of the surface property of the polycrystalline TiN bottom 
electrode (BE) were investigated from the viewpoint of the 
etching controllability as well as the MIM characteristics. 
Sputtering process deposited 140 nm-thick TiN BE, followed 
by deposition of 15 nm-thick, microcrystalline-Ta film to 
smooth the BE surface. Then, PECVD-SiN films of 3 to 15 
nm thicknesses were deposited, and 100 nm-thick TiN top 
electrode (TE) was also sputtered.  After etching the TE 
electrodes with Cl2-based gases, the MIM capacitors of 1680 
m2 were integrated into the Cu-DDI (Fig. 2). The 
capacitance @100 MHz, the leakage current, VBD and TDDB 
were evaluated for the integrated SiN MIMs.  
 

3. Results and Discussion 
(a) MIM profile control:   

After etching the TiN TE on the 10 nm-thick SiN, the 
resultant surface of the TiN BE suffered from severe 
roughening (Fig. 3(a)). Ultra-thin SiN on the TiN BE was 
partially etched away during the over-etching, and the 
remained SiN acted as micro-masks to the TiN BE due to the 
high etching rate of TiN to SiN (Fig. 4(a) and Table 1). 
Insertion of Ta, which had high selectivity in etching rate to 
TiN, behaved as an excellent etching stopper, resulting in the 
smooth surface of the BE after TE etching as shown in Figs. 
3(b) and 4(b). Thus, the Ta/TiN BE improves the MIM 
etching profile with ultra-thin SiN. 
(b) Electrical Properties:   
  Figure 5 plots capacitance of the SiN MIMs as a function 
of surface roughness of the BE under the SiN film. Here, the 
roughness was controlled by thickness of the polycrystalline 
TiN BE. Capacitance increased with the surface roughness in 

both cases of the TiN and Ta/TiN BEs. Increase of 
capacitance with roughness is related to geometric increment 
of the effective surface area.  TEM images and AFM 
profiles (Fig. 6) proved that the surface roughness of BE was 
smoothed by deposition of Ta on the TiN BE. Note that 
discrepancy of capacitance between TiN and Ta/TiN BEs in 
Fig. 5 was originated from the difference in the incubation 
time of the SiN deposition designed for the 10nm-thickness, 
or essentially from actual SiN thickness.  Hereafter, the SiN 
thickness is expressed as the actual thickness measured. 

In natural, leakage current and capacitance increased with 
decreasing SiN thickness (Fig. 7).  For the ultra-thin SiN 
below 10 nm, Ta insertion effectively reduced leakage 
current due to surface smoothing effect. The conduction 
mechanism of 10 nm-thick SiN on Ta/TiN was confirmed to 
be P-F mode, which was also observed in the relatively thick 
SiN (13 nm) on TiN. (Fig. 8)  Fig. 9 shows relation of 
leakage current and capacitance for the SiN MIM structures 
after full integration. We successfully fabricated the SiN 
MIM with high capacitance and low leakage current using 
the Ta/TiN BE. The results demonstrated that the SiN 
MIM-DCC is applicable in the capacitance of 7 fF/m2. 
(c) MIM Reliability:  Reliability was tested for the MIM 
capacitors with or without Ta insertion.  Insertion of Ta on 
the TiN BE improved the breakdown characteristic of the 10 
nm-thick SiN MIM with 7 fF/m2 (Fig. 10), achieving high 
breakdown field of 6 MV/cm, which was much higher than 
that of the thick SiN (13 nm) on TiN BE with 5.5 fF/m2.  
Fig. 11 shows the dependence of t63.2 in the Weibull plot of 
TDDB test, shown in the inset, on the stress bias (E-filed).  
Insertion of Ta improved TDDB lifetime by approximately 
6000 times due to reduction of the roughness of the BE.   
     

4. Conclusions 
Coverage of the TiN BE with thin Ta layer achieves 

excellent controllability of etching process of the MIM 
structure with ultra-thin SiN.  In addition, insertion of the Ta 
layer reduces the surface roughness of the 
polycrystalline-TiN BE, and the smoothed surface improves 
the dielectric characteristics such as leakage, breakdown and 
TDDB reliability in the integrated MIM capacitors.  The 
SiN-MIM with the Ta/TiN BE achieves high capacitance of 7 
fF/m2, along with longer TDDB lifetime by approximately 
6000 times than that without Ta insertion. 
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Table 1 Characteristics of SiN MIM

Fig.1 Ultra-thin SiN- MIM capacitor integrated into the Cu 
BEOL; (a) illustration and  (b) technical points of this work.  

Fig.11 TDDB lifetime estimation of the 
capacitors with TiN or Ta/TiN BEs. 
Inset is the Weibull plot for capacitors 
with Ta thin layer.

Fig.9 Leakage current and capacitance 
of the SiN MIM capacitors. Insertion of 
Ta on TiN BE reduces leakage current, 
especially in high capacitance region.

Fig.10 Cumulative probability of 
breakdown field for the SiN MIM 
capacitors with TiN or Ta/TiN BEs.

Fig.7 Leakage current and capacitance 
as a function of the SiN thickness. 

Fig.8 P-F analysis of the leakage 
current of the integrated capacitors. 

Fig.5 Dependence of capacitance on 
the sur face roughness  of BE.

Fig.6 XTEM images of MIM structures 
and surface profiles of the BEs (a) 
without and (b) with Ta thin layer. 
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(a) W/O Ta

(b) With Ta

(a) W/O Ta

(b) With Ta
Fig.3 SEM images of  the etched 
surface after TE etching (a) 
without and (b) with Ta thin layer.

Fig.4 Effect of over-etching during TE etching (a) 
without and (b) with Ta thin layer on the TiN BE.
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Fig.2 SEM image of the Ultra-thin 
SiN MIM fabricated.
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