Study of La Concentration Dependent V_{FB} Shift in Metal/HfLaOx/Si Capacitors

Yoshiki Yamamoto, Koji Kita, Kentaro Kyuno and Akira Toriumi

Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan Phone: +81-3-5841-7161 Fax: +81-3-5841-7161 E-mail: yoshiki@adam.t.u-tokyo.ac.jp

1. Introduction

HfLaOx is a promising high-k material because it achieves both high-crystallization temperature and high permittivity ^[1]. In addition, it has been reported that La₂O₃ concentration increase in HfLaOx causes a negative shift of V_{FB} value ^[2] We think that it can be used for the V_{FB} tuning. Therefore, it is important to understand the mechanism of V_{FB} shift in this system. In this study we have investigated the origin of the La concentration dependence of V_{FB} in HfLaOx MIS capacitors.

2. Experimental

HfLaOx films were deposited on HF-last p-Si (100) by RF co-sputtering in Ar at room temperature. The post-deposition annealing in 0.1%-O₂+N₂ mixture was performed at 600°C for 30 sec. The forming gas annealing was performed at 500 °C, followed by Au or Al evaporation for gate electrode. After metal deposition, any annealing process is not performed. The film composition was determined by XPS.

3. Results and Discussion

 V_{FB} values of Au/HfLaOx/Si capacitors with different La concentrations as a function of CET are shown in **Fig. 1**. The result suggests that fixed charges are relatively small. The capacitors with the larger La show the more negative V_{FB} shift, which is similar to the previously reported results ^[2].

Next, possible origins for the effective work function (Φ_{eff}) shift were investigated except trapped charged effect. The water absorption effect on V_{FB} was first checked, because La₂O₃ is known to be hygroscopic ^[3]. So, HfLaOx films with La concentrations of 20% and 40% were exposed to the air after post-deposition annealing, followed by gate electrode evaporation. **Fig. 2** shows the V_{FB} shift due to the air exposure. HfLaOx film with La concentration of 40% exhibited a larger shift than that of 20%. However the direction of V_{FB} shift is opposite (positive) in both films and it is not the origin for the V_{FB} shift.

It is likely that a dipole layer may exist in the MIS structure and cause a shift of V_{FB} . Note that the dipole layer in any position inside the film causes a given offset irrespective of the dipole position, so no HfLaOx thickness dependence should be observed as explained by Eq. (1) in the caption in **Fig.3(a)**. Four possible positions of the dipole layer were considered as shown in **Fig. 3(b)**; (1) Si/SiO₂, (b) SiO₂/HfLaOx, (3) HfLaOx/metal, and (4) HfLaOx/Si.

In order to clarify which dipole layer position in MIS structure dominantly affects V_{FB} shift, four kinds of MIS capacitors with different La concentrations in upper and

lower parts were fabricated, as shown in Fig.4, where the C-V curves corresponding to the respective capacitor structures are shown. It should be noted that V_{FB} in Cap.1 is exactly the same as that in Cap.4, while V_{FB} in Cap.2 is the same as that in Cap.3. The insensitiveness of the La concentration in the top interface clearly indicates that the Au/HfLaOx interface ((3) in Fig. 3 (b)) is not an origin for the V_{FB} shift with La concentration change, but a lower part (substrate side) of HfLaOx should be responsible for the V_{FB} behavior. To further confirm this result, we investigated the V_{FB} difference between Au and Al gate electrode MIS capacitors. Fig.5 (a) shows C-V curves using Au or Al gate electrode for three kinds of La concentration HfLaOx samples. Irrespective of La concentrations, the V_{FB} gap (ΔV_{FB}) between Au and Al gate electrode cases is about 1V, which is very similar to a value with the work function differences $(\Delta \Phi_M)$ in the vacuum ^[4]. Φ_{eff} is plotted as a function of $\Phi_{\rm M}$ in Fig. 5 (b). In any La concentrations, the pinning parameter S= $\Delta \Phi_{eff} / \Delta \Phi_{M} \approx 1$, which implies that the top interface has very small effect, if any, on Φ_{eff} shift. The result in Fig. 5(b) also means that it was reasonable to assume no dipole layer at the La-60% and La-20% HfLaOx interface

It was reported that SiO₂ layer on high-k could suppress the V_{FB} shift of poly-Si/HfSiO/Si system ^[5]. So, from the viewpoint of the charge transfer between HfLaOx and Si substrate as a possible reason for V_{FB} shift, we compared HfLaOx on HF-Last Si and HfLaOx on 10nm-thick SiO₂/Si. In the case of using Hf-Last Si, the interface layer thickness was about 1nm. **Fig. 6** shows that in both cases, the difference of V_{FB} between La-66% and La-20% MIS capacitors is about 0.5V. Thus, it is concluded that 10nm-thick SiO₂ layer has very little to do with the La concentration dependence of V_{FB}, and that the charge transfer between HfLaOx and Si substrate ((4) in Fig. 3 (b)) is not the origin of the present V_{FB} shift, and furthermore that the SiO₂/Si interface possibility of the dipole layer ((1) in Fig. 3 (b)) is also ruled out.

From those considertaions, most of possible reasons have been excluded. One last and the most plausible origin is a dipole layer at HfLaOx/SiO₂ interface ((2) in Fig. 3 (b)). It is reported that high-k/SiO₂ interface can have a dipole ^[6]. Experimental results suggest that La introduction into HfO₂ could modulate the dipole density at high-k/SiO₂ interface, though microscopic understanding remains to clarify.

4. Conclusions

We have investigated V_{FB} characteristics of capacitors with HfLaOx dielectrics. V_{FB} value is dependent on La

concentration in HfLaOx and the increase of La concentration results in the negative shift of V_{FB} . We suggest that the most plausible origin is an existence of the dipole layer, which is dependent on the La concentration in HfLaOx, at HfLaOx/SiO₂ interface.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research from the MEXT in Japan, and NEDO/MIRAI project. **References**

- [1]Y.Yamamoto et al., Ext. Abst. of SSDM p.252, (2005).
- [2]X.P Wang et al., IEEE Trans. Electron Dev. Lett. 27, 31(2006).
- [3] Y.Zhao et al., Appl. Phys. Lett. 88, 072904 (2006).
- [4] B.Michaelson, J.Appl. phys. 48, 4729 (1977).
- [5] Y. Kamimuta et al., Ext. Abst. of SSDM p.24, (2005).
- [6]C.C.Fulton et al., J.Appl.Phys. 99, 063708 (2006).

Fig. 2 V_{FB} shift as a function of the air exposure time. V_{FB} values are shifted to positive direction, which is opposite to the experimental V_{FB} shift.

Fig. 4 C-V curves of four kinds of MIS capacitors with different La profile in the dielectrics. Cap1:Au/66%/20%/Si, Cap2:Au/20%/66%/Si. Cap3:Au/66%/Si, Cap4: Au/20%/Si. This result clearly shows that the bottom HfLaOx/SiO₂ interface determines the experimental V_{FB} shift.

Fig. 1 V_{FB} of Au/HfLaOx/p-Si capacitors with different La concentrations as a function of CET.

Fig. 3 (a) Simplified MOS structure with a dipole layer inside the film. The dipole layer causes a given V_{FB} shift irrespective of its position, as follows.

$$\Delta \Phi = V f b - W_{ms} = -\frac{Q(x+d)}{\varepsilon_{ox}} + \frac{Q \cdot x}{\varepsilon_{ox}} = -\frac{Q \cdot d}{\varepsilon_{ox}} \qquad \dots \text{Eq.1}$$

(b) Possible dipole layer position; $(1)Si/SiO_2$ interface, $(2) SiO_2/HfLaOx$ interface (3)HfLaOx/Metal interface, (4) interaction between HfLaOx and Si substrate ^[5].

Fig. 5 (a)C-V curves for Au or Al/HfLaOx(20nm)/p-Si capacitors. $\Delta V_{FB}=V_{FB}(Au)-V_{FB}(Al) \approx 1V$ for all La composition. (b) Φ_{eff} as a function of vacuum work function

Fig. 6 Comparison of C-V curves of Au/HfLaOx(20nm)/I.L/Si and Au/HfLaOx(20nm)/ SiO₂(10nm) /Si. In both structure, the difference of V_{FB} (66% and 20%) is about 0.5~0.6V.