J-3-1 (Invited)

High-resolution RBS analysis of Si-dielectrics interfaces

Zhao Ming¹, Kaoru Nakajima¹, Motofumi Suzuki¹, <u>Kenji Kimura</u>¹, Masashi Uematsu², Kazuyoshi Torii^{3*}, Satoshi Kamiyama³, Yasuo Nara³, Heiji Watanabe⁴, Kenji Shiraishi⁵, Toyohiro Chikyow⁶, Keisaku Yamada⁷

Department of Micro Engineering, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan ²NTT Basic Research Laboratories, NTT Corporation, Atsugi 243-0198, Japan
Semiconductor Leading Edge Technologies, Inc. 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan ⁴Department of Precision Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan ⁵Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan ⁶National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan ⁷Nanotechnology Research Laboratories, Waseda University, Shinjyuku, Tokyo 62-0041, Japan

1. Introduction

In the future complementary metal-oxide-semiconductor (CMOS) devices, SiO₂ cannot be used for gate dielectric films because of its high leakage current. Alternative materials with a dielectric constant higher than SiO₂, such as HfO₂, have been extensively studied [1]. The interfaces between Si and these dielectric materials are not so good as compared to Si/SiO2. For better device performance, characterization and precise control of the Si/dielectrics interface are of prime importance. In this talk, examples of the analysis of the Si-dielectrics interfaces high-resolution Rutherford backscattering spectroscopy (HRBS) are presented with a particular emphasis placed on the interface reaction during thermal processing of HfO₂/SiO₂/Si stack structures.

2. Experimental

Å HfO_2 film of ~3 nm thickness was grown by ALD after preparing a SiO_2 layer of 0.7 nm thickness on Si(001). The samples were annealed in an infrared furnace at 500 - 900°C in 0.1 Torr dry oxygen for 2 - 20 minutes. The sample was also annealed in $^{18}O_2$ ambient to investigate the diffusion behavior of oxygen. These samples were observed by HRBS using 400 keV He⁺ ions as a probe. The details of the HRBS measurement were described elsewhere [2].

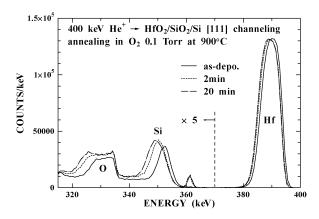


Fig. 1: HRBS spectra of HfO₂/SiO₂/Si.

3. Results and discussion

Fig.1 shows examples of the HRBS energy spectra observed under [111] channeling condition before and after annealing. The solid line shows the spectrum of the as-grown sample. There are three peaks corresponding to Hf (at $\sim 390~keV$), Si in the SiO $_2/Si$ interface region (at $\sim 350~keV$) and O (at $\sim 330~keV$). The thickness of the interfacial SiO $_2$ layer is estimated to be 0.7 nm from the spectrum.

The spectra observed after annealing at 900°C in O_2 are quite different from that of the as-grown sample. Both the Si peak as well as the O peak become wider after annealing, indicating the growth of the interfacial SiO_2 layer. In addition to these changes, a new peak appears around 361 keV, showing that a thin SiO_2 layer was formed. The origin of the surface SiO_2 layer was discussed elsewhere [3].

Figure 2 shows the thickness of the observed interfacial SiO_2 layer as a function of the annealing time. The initial growth rate of the interfacial SiO_2 layer is ~ 0.5 nm/min in the first 2 min, which is much faster than the reported oxidation rate (0.1 nm/min) for 0.7 nm SiO_2 atop Si at the same temperature and at higher O_2 pressure [4]. The growth rate becomes almost saturated at a thickness \sim 2 nm. This kind of initial enhancement and subsequent suppression of SiO_2 growth reminds one the oxidation of Si

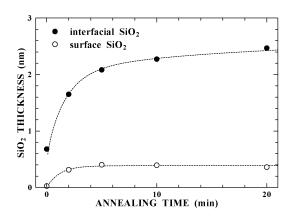


Fig. 2: Interface and surface SiO₂ thickness as a function of annealing time.

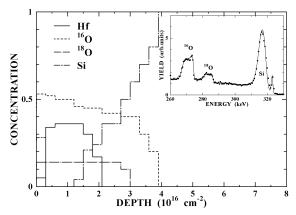


Fig. 3: Elemental depth profiles observed after annealing at 900°C in 0.1 Torr ¹⁸O₂ for 20 minutes.

by atomic oxygen [5 - 8].

In order to clarify the origin of the enhancement of SiO₂ growth rate, the behavior of oxygen during the annealing was observed using ¹⁸O as a tracer. The inset of Fig. 3 shows observed HRBS spectrum of HfO₂/SiO₂/Si(001) annealed at 900°C in 0.1 Torr ¹⁸O₂ for 20 minutes. The signal of ¹⁸O can be observed separatly from ¹⁶O signal. Figure 3 shows the depth profiles derived from the observed HRBS spectra. The flat profile of ¹⁸O in HfO₂ demonstrates an extremely high diffusion coefficient of oxygen in HfO₂. This indicates that the oxygen diffusion in HfO₂ is not the rate limiting step in the interfacial layer growth.

More detailed inspection of ¹⁸O profile reveals that ¹⁸O exists only near the HfO₂/SiO₂ interface in the SiO₂ layer. This is quite different from the ¹⁸O distribution in SiO₂/Si structure oxidized by ¹⁸O₂, which usually shows an accumulation of ¹⁸O near the SiO₂/Si interface [9]. In that case, molecular oxygen is the dominant diffusing oxidant. If the dominant diffusing oxidant in HfO₂ is also the molecular oxygen, the accumulation of ¹⁸O near the SiO₂/Si interface should be observed. The absence of the interface accumulation indicates that molecular oxygen is decomposed into atomic oxygen in HfO₂ and the atomic oxygen is the dominant diffusing oxidant.

There are two possible mechanisms of diffusion of atomic oxygen in oxides, the interstitial and exchange mechanisms [10]. In the interstitial mechanism, the interstitial oxygen atoms diffuse through empty space between the lattice sites. If this is the case, ¹⁸O should accumulate in the SiO₂/Si interface region. On the other hand, the exchange mechanism involves the continuous replacement of a lattice site by the diffusing defect. This mechanism is characteristic of diffusion of anions in oxides such as MgO [11]. In this mechanism, incorporated ¹⁸O atoms push the already existing ¹⁶O toward SiO₂/Si interface. The present ¹⁸O profile demonstrates that the exchange mechanism is a dominant mechanism both in the HfO₂ and SiO₂ layers.

Figure 4 shows Arrhenius plot of the initial growth rate of SiO_2 in the first 2-min. The activation energy is estimated to be ~0.6 eV. Because the diffusion process in HfO_2 is not the rate limiting process in the present case as

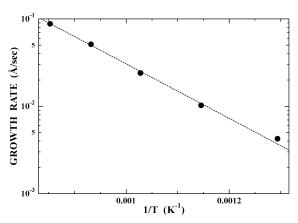


Fig. 4: Initial growth rate of the interfacial SiO₂ layer as a function of temperature.

was mentioned above, this activation energy should be related to the oxygen diffusion in SiO_2 and/or oxygen reaction with Si at SiO_2/Si . The obtained activation energy is comparable to the reported diffusion activation energy of O^- in SiO_2 (0.14 \sim 0.7 eV) [12, 13], confirming that the dominant diffusing oxygen species is not molecular oxygen but the atomic oxygen ion.

4. Conclusion

The diffusion mechanism of oxygen in HfO_2 was studied by HRBS using ^{18}O as a tracer. The observed ^{18}O profile indicates that molecular oxygen is decomposed into atomic oxygen and the atomic oxygen diffuses through HfO_2 via an exchange mechanism.

Acknowledgement

This work was supported in part by the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology. This work was also supported by the Center of Excellence for Research and Education on Complex Function Mechanical System (COE program) of the Ministry of Education, Culture, Sports, Science and Technology.

References

- [1] G. Lucovsky et al, Appl. Phys. Lett.74, 2005 (1999).
- [2] K. Kimura *et al*, Nucl. Instr. and Methods B **219-220**, 351 (2004)
- [3] Zhao Ming et al, Appl. Phys.Lett, 88, 153516 (2006).
- [4] H. Z. Massoud *et al*, J. Electrochem. Soc. **132**, 1745 (1985)
- [5] J. R. Ligenza, J. Appl. Phys. 36, 2703 (1965)
- [6] I. W. Boyd et al, Jpn. J. Appl. Phys. 32, 6141 (1993)
- [7] H. Itoh *et a*, Microelectron. Eng. **48**, 71 (1999)
- [8] A.Kazor and I. W. Boyd, J. Appl. Phys. **75**, 227 (1994)
- [9] E.P. Gusev et al, Phys. Rev. B 52, 1759 (1995).
- [10] A. S. Foster et al, Phys. Rev. Lett. 89, 225901 (2002).
- [11] T. Brudevoll *et al*, Phys. Rev. B **53**, 7731 (1996)
- [12] Y. Yasuda et al, J. Appl. Phys. 67, 2603 (1990)
- [13] S. K. Sharma et al, J. Mater. Sci. Lett. 9, 982 (1990)

*Present affiliation: Hitachi, Ltd.