Nonlinear Al Concentration Dependence of the $\mathrm{HfAlO}_{\mathrm{x}} / \mathbf{S i}$ Conduction Band Offset Studied by Internal Photoemission Spectroscopy

T. Horikawa ${ }^{1}$, A. Ogawa ${ }^{2}$, K. Iwamoto 2, K. Okada ${ }^{2}$, H. Ota ${ }^{1}$, T. Nabatame ${ }^{2}$, and A. Toriumi ${ }^{1,3}$
${ }^{1}$ MIRAI-ASRC, AIST, Tsukuba, Ibaraki 305-8569, Japan
${ }^{2}$ MIRAI-ASET, Tsukuba, Ibaraki 305-8569, Japan, ${ }^{3}$ Univ. of Tokyo, Tokyo 113-8656, Japan
Phone: +29-849-1549, Fax: +29-849-1529, E-mail: tsuyoshi.horikawa@aist.go.jp

1. Introduction

In high dielectric constant materials considered for replacement of a SiO_{2} gate dielectric in CMOS devices, a high energy barrier height at the conduction band of Si surface is needed. Internal photoemission (IPE) is a reliable method for the evaluation of the band offset, ${ }^{[1]}$ as the energy band diagram is schematically shown in Fig. 1. Afanas'ev et.al. ${ }^{[2]}$ reported the IPE results on the dependence of Al concentration in $\mathrm{HfAlO}_{\mathrm{x}}$ on the band offset, and concluded that the conduction band of HfAlO_{x} was derived mostly from the states of Al atom. On the other hand, a small amount of Al in HfAlO_{x} can successfully modulate the V_{FB} thanks to the modulation of the Fermilevel pinning. ${ }^{[3]}$ Hence, a more accurate understanding of the electronic properties of HfAlO_{x} is required for optimizing and designing Hf-based high-k dielectrics. In this paper, effects of Al concentration on the conduction band edge of HfAlO_{x} have been carefully studied, particularly focusing on the low Al concentration region. The conduction band offset for N -doped HfO_{2} is also presented.

2. Sample preparation and IPE measurement

IPE specimens were fabricated as follows. 1.3-nm- thick SiO_{2} interfacial layers (ILs) were thermally grown on low doped p-type (100) Si substrates, followed by HfAlO_{x} film deposition with thickness of 6.4 nm using Layer-byLayer Deposition and Annealing (LL-D\&A) method. ${ }^{[4]}$ Semitransparent 13-nm-thick Al electrode was deposited at room temperature without PMA to avoid any interfacial reaction. ${ }^{[5]} \mathrm{Al}$ electrode was used in order to accurately evaluate the band offset, because the IPE spectra for electron injection in $\mathrm{Al} / \mathrm{HfAlO}_{\mathrm{x}}$ should give a distinct threshold due to high photoemission efficiency. The electric field dependence of the offset was taken into account for estimating the intrinsic band offset value.

IPE spectra were measured in the photon energy range of 1.3 eV to 3.2 eV with a spectral resolution of 2 nm . A monochromatic light with square shape was irradiated on MOS capacitors with an area of $200 \mu \mathrm{~m} \times 200 \mu \mathrm{~m}$. Typical photon flux was $1-5 \times 10^{11}$ photons $\cdot \mathrm{s}^{-1}$. Steady state IPE current was measured under negative voltages on the Al electrode to avoid the interference of the transient current.

3. Conduction band offset for $\mathbf{H f O}_{2}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$

Figures 2 (a) and 3 (a) show the square root plots of IPE spectra for an $\mathrm{Al} / \mathrm{HfO}_{2}$ and for an $\mathrm{Al} / \mathrm{Al}_{2} \mathrm{O}_{3}$, respectively. The quantum yield Y, is defined by the photocurrent per the incident photon flux. Fig. 2 (b) and Fig. 3 (b) show that the offset energy Φ_{e} was plotted as a function of $\left(V_{\mathrm{g}}-V_{\mathrm{fb}}\right)^{1 / 2}$ for both samples. A good linear dependence of Φ_{e} was obtained after taking account of the photo-assist tunneling and the Schottky barrier lowering at
$\mathrm{Al} /$ high-k interface. From these results, $\left.\Phi_{\mathrm{e}}\right|_{\mathrm{Vg}=\mathrm{Vfb}}=1.68 \mathrm{eV}$, and 1.94 eV can be quantitatively evaluated for $\mathrm{Al} / \mathrm{HfO}_{2}$ and $\mathrm{Al} / \mathrm{Al}_{2} \mathrm{O}_{3}$. The $\mathrm{Al} / \mathrm{SiO}_{2}$ case was also measured to check the present procedure, and $\left.\Phi_{\mathrm{e}}\right|_{\mathrm{Vg}=\mathrm{Vfb}}=3.2 \mathrm{eV}$ was obtained. Table 1 compares those band offset values for $\mathrm{HfO}_{2} / \mathrm{Si}$ and $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Si}$ with previously measured results, ${ }^{[2,6-9]}$ together with theoretical work. ${ }^{[10]}$ It is confirmed that the present results are in the reasonable range of the reported values.

4. Effect of Al concentration on $\mathrm{HfAlO}_{\mathrm{x}}$ band offset

The dependence of $\Phi_{\mathrm{e}}\left(V_{\mathrm{g}}\right)$ on $\left(V_{\mathrm{g}}-V_{\mathrm{fb}}\right)^{1 / 2}$ for an $\mathrm{Al} / \mathrm{HfAlO}_{\mathrm{x}}$ with different Al concentration is shown in Fig.4. HfO_{2} and $7 \% \mathrm{Al}$-doped HfO_{2} show a smaller gate voltage dependence and the lower $\left.\Phi_{\mathrm{e}}\right|_{\mathrm{Vg}=V f \mathrm{~b}}$ values than the higher Al -doped HfO_{2} samples, which exhibit almost the same gate voltage dependence and approximately equal $\left.\Phi_{\mathrm{e}}\right|_{\mathrm{Vg}=\mathrm{Vfb}}$ values, including pure $\mathrm{Al}_{2} \mathrm{O}_{3}$. Figure 5 shows the dependence of ΔE_{C} between $\mathrm{HfAlO}_{\mathrm{x}}$ and Si evaluated from $\left.\Phi_{\mathrm{e}}\right|_{\mathrm{Vg}=\mathrm{Vfb}}$ for $\mathrm{Al} / \mathrm{HfAlO}_{\mathrm{x}}$ on Al concentration in $\mathrm{HfAlO}_{\mathrm{x}}$, as well as previously reported values by IPE from Si to $\mathrm{HfAlO}_{\mathrm{x}} \cdot{ }^{[2]}$ At $19 \% \mathrm{Al}$ in $\mathrm{HfAlO}_{x}, \Delta E_{\mathrm{C}}$ abruptly increase, and then remains almost constant. On the other hand, the change in band offset evaluated from IPE spectra from Si to $\mathrm{HfAlO}_{x}{ }^{[2]}$ is smaller than that in the present study. The overlap of direct optical transitions in the Si substrate and another IPE from Si to $\mathrm{IL}-\mathrm{SiO}_{2}$ on the spectra might affect evaluation accuracy. In the present study, distinct IPE spectra due to the usage of Al electrode of high photoemission efficiency should make it possible to reliably evaluate band offset.

The abrupt change of Φ_{e} on Al concentration in our IPE measurements is interpreted in the terms of the conduction process in ternary oxides different from binary oxides. Namely, in pure HfO_{2}, the conduction band bottom is mainly derived from $5 d$-states of Hf, while in $\mathrm{Al}_{2} \mathrm{O}_{3}$ it is from $3 s$-states (or mixing with $3 p$) of $\mathrm{Al}^{[11]}$ Since d-states of transition metals are easily localized, the $5 d$-states of Hf do not contribute to the band conduction anymore by Al replacement for a small amount of Hf in HfO_{2}. On the other hand, $3 s$-states of Al are delocalized at higher energy levels than the $5 d$-states of Hf , and Φ_{e} is relatively insensitive to Al concentration. This also explains the fact that a small amount of Al in HfAlO_{x} can significantly reduce the leakage current. ${ }^{[4]}$

5. Effect of \mathbf{N} doping into $\mathbf{H f O}_{2}$

Effect of nitrogen introduced into HfO_{2} on the band offset was also studied using IPE. Fig. 6 (a) and (b) shows the square root plots of IPE spectra for an $\mathrm{Al} / \mathrm{HfO}_{2}$, and for an $\mathrm{Al} / \mathrm{HfON}$ with $[\mathrm{N}] /([\mathrm{O}]+[\mathrm{N}])=0.21$ under various negative gate voltages, and the dependence of $\Phi_{\mathrm{e}}\left(V_{\mathrm{g}}\right)$ on $\left(V_{\mathrm{g}}-V_{\mathrm{fb}}\right)^{1 / 2}$. Almost the same value of $\left.\Phi_{\mathrm{e}}\right|_{\mathrm{g}=}=\mathrm{Vfb}$ around
1.7 eV is obtained for HfO_{2} and HfON . Because nonbonding $\mathrm{O} 2 p$-states mainly contribute to the valence band edge, ${ }^{[11]}$ it is quite reasonable that the substitution of oxygen by nitrogen does not affect the conduction band offset.

6. Conclusions

The result of IPE measurements for $\mathrm{Al} / \mathrm{HfAlO}_{\mathrm{x}}$ structures has shown that the abrupt change of the band offset occurs at Al contents over 19%. On the other hands, for N doping to HfO_{2}, no change of the conduction band offset was observed. This is explained by the idea that the conduction band bottom d-states of Hf is localized by a small amount of Al replacement, while N doping in HfO_{2} only modulate the valence band states.

Fig. 1 Schematic band diagram for high-k/IL-SiO ${ }_{2}$ gate stack under flat band condition and under negative bias condition.

Fig. 5 Dependence of ΔE_{C} between HfAlO_{x} and Si on Al concentration in $\mathrm{HfAlO}_{\mathrm{x}} . \Delta E_{\mathrm{c}}$ was evaluated from $\left.\Phi_{e}\right|_{V g=V f b}$ for Al/HfAlO ${ }_{x}$ in Fig. 4. For comparison, previously reported values evaluated from IPE for electron injection from Si to HfAlO_{x} were also plotted. ${ }^{[2]}$

Fig. 2 (a) Square root plots of quantum yield Y against photon energy for an Al/ 6.4 -nm-thick $\mathrm{HfO}_{2} / \mathrm{IL}-\mathrm{SiO}_{2} / \mathrm{p}$-Si capacitor under various gate voltage conditions.
(b) Dependence of $\Phi_{\mathrm{e}}\left(V_{\mathrm{g}}\right)$ obtained from Fig. 2 (a) on $\left(V_{\mathrm{g}}-V_{\mathrm{fb}}\right)^{1 / 2}$.

Fig. 3 (a) Square root plots of quantum yield Y against photon energy for an $\mathrm{Al} /$ 6.4-nm-thick $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{IL}-\mathrm{SiO}_{2} / \mathrm{p}$-Si capacitor under various gate voltage conditions.
(b) Dependence of $\Phi_{\mathrm{e}}\left(V_{\mathrm{g}}\right)$ obtained from Fig. 3 (a) on $\left(V_{\mathrm{g}}-V_{\mathrm{fb}}\right)^{1 / 2}$.

Acknowledgements

This work is supported by NEDO.

References

[1] V. K. Adamchuk and V. V. Afanas'ev, Prog. Surf. Sci. 41 (1992) 111.
[2] V. V. Afanas'ev et.al., Appl. Phys. Lett. 82 (2003) 245.
[3] M. Kadoshima et al. Dig. VLSI Tech. Symp. (2005) 70.
[4] T. Nabatame et.al., Dig. VLSI Tech. Symp. (2003) 25.
[5] Y. Miura, K. Hirose, J. Appl. Phys. 77 (1995) 3554.
[6] S. Sayan et.al., Appl. Phys. Lett. 80 (2002) 2135.
[7] H. Y. Yu et.al., Appl. Phys. Lett. 81 (2002) 376.
[8] N. Barrett et.al., J. Appl. Phys. 96 (2004) 6362.
[9] S. Miyazaki, J. Vac. Sci. Technol. B 19 (2001) 2212.
[10] P. W. Peacock and J. Robertson, J. Appl. Phys. 92 (2002) 4712.
[11] G. Lucovsky, J. Non-Crystalline Solids 303 (2002) 40.

Table 1 Comparison of reported values for conduction band offset, ΔE_{C} for high-k/Si substrate

	This study $\left(\phi_{M}(\mathrm{AI})=4.1 \mathrm{eV}\right)$	IPE	XPS	Theoretical work
HfO_{2}	$1.63(\mathrm{eV})$	$2.0^{[2]}$	$1.2^{[6]}$ $1.91^{[7]}$ $1.50-1.85^{[8]}$	$1.3^{[10]}$
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$1.89(\mathrm{eV})$	$2.1^{[2]}$	$2.37^{[7]}$ $2.08^{[9]}$	$2.4^{[10]}$

Fig. 4 Dependence of $\Phi_{e}\left(V_{\mathrm{g}}\right)$ on $\left(V_{\mathrm{g}}-V_{\mathrm{fb}}\right)^{1 / 2}$ for an $\mathrm{Al} / 6.4-\mathrm{nm}$-thick $\mathrm{HfAlO}_{\mathrm{x}} / 1.3-\mathrm{nm}$-thick IL-SiO 2 p-Si capacitor with various Al concentrations.

Fig. 6 (a) Square root plots of quantum yield Y against photon energy for an Al/6.4-nm-thick $\mathrm{HfO}_{2} / \mathrm{IL}^{-\mathrm{SiO}_{2}} / \mathrm{p}-\mathrm{Si}$ capacitor, and for an $\mathrm{Al} / 14.4 \mathrm{~nm}$-thick $\mathrm{HfO}_{2} \mathrm{~N} / \mathrm{IL}-\mathrm{SiO}_{2} / \mathrm{p}-\mathrm{Si}$ capacitor under various gate voltage conditions.
(b) Dependence of $\Phi_{\mathrm{e}}\left(V_{\mathrm{g}}\right)$ obtained from Fig. 6 (a) on $\left(V_{\mathrm{g}}-V_{\mathrm{fb}}\right)^{1 / 2}$.

