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Abstract 
Plasma nitridation (N*) of HfO2 with metal gate 

enables equivalent oxide thickness (EOT) scaling to 0.90 nm 
with 81% univ. SiO2 mobility (1 MV/cm). N* pressure and N 
dose were studied to improve the dielectric interface and 
mobility vs. thermal nitridation. With HfO2 and optimized 
metal gate, N* enables scaling and drive current enhancements. 
1. Introduction 

Plasma nitridation has been shown to enable 
HfSiON/polySi EOT scaling [1, 2]. However, N* of HfO2 may 
be more challenging because Si-N bonding is not possible in 
HfO2. N bonds to Hf immediately after nitridation, but after 
1000°C, some N typically moves to the Si/SiOx interface and 
bonds to Si [3, 4]. Excessive Si-N bonding has been shown to 
degrade transconductance [5] and carrier mobility [6]. In this 
report, we apply N* to HfO2 with the intention of achieving a 
0.9 nm EOT, good interface quality, good mobility, and 
enhanced drive current.   Results show that N* successfully 
scales the EOT to 0.9 nm without a large mobility tradeoff, 
thereby enhancing drive current.  
2. Experimental 
 Devices used in this study were gate-first field-effect 
transistors (FETs) including a 1070°C-spike source/drain 
anneal. Atomic layer deposition (ALD) HfSiO and HfO2 were 
deposited on a SiO2 interface. N was placed in the films with 
either a) thermal processes or b) plasma processes.  A  
10 nm metal gate electrode was deposited and then capped with 
100 nm amorphous Si. EOT was extracted from measured 
capacitance-voltage (C-V) curves using the North Carolina 
State University (NCSU) CVC model. Current-voltage (Id-Vg) 
characteristics were measured on 10×1µm and 10×0.1µm 
FETs. The Si channel doping for nFETs was ~3×1017 B/cm3.  
Mobilities were extracted from 10×1µm devices using the 
NCSU mob2d model. 
3. Results and Discussion 

Fig. 1 shows X-ray photoelectron spectroscopy (XPS) 
results for N* of HfSiO and HfO2. Fig 1(a) displays the N 1s 
spectra for HfSiO; Fig. 1(b) displays the N 1s spectra for HfO2. 
The results show increasing amounts of N in these dielectrics 
and that N is likely bonded as both Hf-N and Si-N. The N 
profile is important for device performance [7].  Fig. 2 shows 
secondary ion mass spectroscopy (SIMS) N profiles using 
plasma pressure as the parameter. At high N* pressure, the N 
peak is closer to the Si substrate.  Therefore, low pressure N* 
was implemented and yielded results shown in Fig. 3.  Low 
pressure N* results in better peak mobility at a given EOT, 
consistent with the SIMS result. With an optimized N* process, 
thermal nitridation and N* were compared over a common N 
dose range. Fig. 4 shows that N* enables better mobility than 
thermal nitridation for a given N dose. This 3-5% improvement 
for N* over thermal N is consistent with previous results for 
HfSiON/PolySi [2]. Charge pumping results (Fig. 5) suggest 
that N* results in fewer interface traps than thermal nitridation. 

For low frequencies, such as 1000Hz, the charge pumping 
technique is sensitive to the Si/dielectric interface. An almost 
100× improvement in trap density (Nit) is observed for N* at 
1000Hz. This result is consistent with the SIMS N profile in 
Fig. 2 and mobility data in Fig. 4.  

Because of promising results obtained with HfSiO, 
optimized N* processes were applied to HfO2. Transistor C-V 
characteristics of plasma nitrided HfO2 are shown in Fig. 6.  
Specific capacitance is improved in both accumulation and 
inversion for N*-nitrided devices. EOT improves from 1.06 nm 
to 0.90 nm for the N*-nitrided dielectric. Capacitance 
equivalent thickness in inversion (CETinv) improves to 1.40 nm 
for the N*-nitrided sample. Flatband voltage is unchanged, 
suggesting the Si/dielectric interface is unperturbed by N, in 
agreement with SIMS. The scaling benefit of N* is illustrated 
in Fig. 7. Approximately 0.1 nm EOT scaling is achieved with 
nitrided HfO2 at a constant leakage current relative to stacks 
without N*. At EOT=0.9 nm, nearly 1000× leakage current (Jg) 
reduction is achieved relative to SiO2/PolySi.  

Fig. 8 shows HfO2 mobility improvement due to 
scaling and HfO2+N* results on scaled HfO2. Mobility does not 
significantly change with N* as EOT scales to 0.90 nm.  Fig. 9 
shows mobility as a function of effective field.  Scaling to  
0.82 nm shows peak mobility loss possibly due to coulomb 
scattering.  Fig. 10 compares drain current-gate voltage (Id-Vg) 

in the linear (Vd=0.050V) and saturation (Vd=1.2V) regimes for 
HfO2 with and without N*.  HfO2 + N* scales EOT and CETinv 
~0.15 nm (Fig. 6), but with a small mobility penalty (Fig. 9).  
Despite the penalty, nFET drive current improves ~8% (Id,sat) 
and ~3% (Id,lin) due to CETinv scaling from N*.  pFET drive 
current is nearly unchanged, suggesting that the pFET may be 
more sensitive to N [5, 6]. Fig. 11 suggests that N* is favorable 
for sub-1 nm EOT with >80% mobility.  Fig. 12 shows that 
VTH stability is similar for HfO2 with and without N*. 
4. Conclusions 
      Plasma nitridation is a promising option to continue high-
k/metal gate stack scaling below EOT=1.00 nm. Optimizing N 
dose and profile can improve electron mobility and Nit relative 
to thermal nitridation.  Our results show that N*-treated HfO2 
scales EOT=0.90 nm with 81% univ. SiO2 mobility (1 MV/cm). 
Scaling to 0.9 nm results in a small mobility loss, but ~8% 
nFET Id,sat improvement. 
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Figure 2. SIMS N profile for N* nitrided HfSiO. With
decreasing pressure, the interfacial N feature moves
away from the Si/dielectric interface. 

Figure 3. Electrical confirmation that lower 
pressure N* is desired for improved NFET
mobility at a given EOT.  

Figure 4.  Comparison of thermal and N* showing
that for a given N composition, a small improvement
in mobility may be achieved with N*. 

Figure 5. Nit as a function of frequency.  Low
frequency (1000 Hz) estimates Nit near the 
Si/dielectric interface. Lower Nit for N* suggests a 
better interface explaining mobility result. 

Figure 6. nFET C-V characteristics. The N* 
process improves accumulation and inversion
capacitance without significant shift in Vfb.  

Figure 7. Scaling  advantage of HfO2 + N* relative to 
HfO2 with thermal nitridation (TN). N* allows 0.1 nm
of EOT scaling at constant leakage current. ~1000×
reduction vs. SiO2/PolySi. 

Figure 8. Scaling HfO2 thickness can improve
mobility, but N* and optimized metal gate electrode 
provides further advantage enabling similar
mobility but at EOT=0.90nm. 

Figure 9. Mobility response to plasma nitridation.
HfO2 (1.06nm) is capable of peak and high field
mobility similar to SiON, while N* scaling to 0.9
nm shows a small trade-off. 

Figure 10. Id-Vg for HfO2 (lines) and HfO2 +N*
(symbols). Scaling the EOT results in nFET Id
improvement in both linear and saturation regions,
despite mobility trade-off. Data from 10×0.1 um FETs. 

Figure 11. Mobility response to EOT scaling for
multiple scaling methods. N* (black circles)
moves scaling off recent trend (gray) and is
superior to alternative scaling methods (black
triangles). 
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Figure 12. Constant Voltage Stress at 23°C and 
1.8V. Threshold voltage (VTH) stability is 
similar with and without N*. HfO2 thickness is 
constant in both cases, possibly dominating the

Figure 1. Si 2p & N1 XPS for N* treated (a) HfSiO
and (b) HfO2. Samples were capped with MeN/a-
Si, annealed (1000°C-5s), etched before analysis.
Hf-N and Si-N may exist in both (a) and (b). 
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