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Plasma Nitridation of HfO, Enabling a 0.9 nm EOT with High Mobility for a Gate First MOSFET
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Abstract

Plasma nitridation (N*) of HfO, with metal gate
enables equivaent oxide thickness (EOT) scaling to 0.90 nm
with 81% univ. SiO, mobility (1 MV/cm). N* pressure and N
dose were studied to improve the dielectric interface and
mobility vs. thermal nitridation. With HfO, and optimized
meta gate, N* enables scaling and drive current enhancements.
1. Introduction

Plasma nitridation has been shown to enable
HfSION/polySi EOT scaling [1, 2]. However, N* of HfO, may
be more challenging because Si-N bonding is not possible in
HfO,. N bonds to Hf immediately after nitridation, but after
1000°C, some N typicaly moves to the Si/SiO, interface and
bonds to Si [3, 4]. Excessive Si-N bonding has been shown to
degrade transconductance [5] and carrier mobility [6]. In this
report, we apply N* to HfO, with the intention of achieving a
0.9 nm EOT, good interface quality, good mobility, and
enhanced drive current.  Results show that N* successfully
scales the EOT to 0.9 nm without a large mobility tradeoff,
thereby enhancing drive current.
2. Experimental

Devices used in this study were gate-first field-effect
transistors (FETs) including a 1070°C-spike source/drain
anneal. Atomic layer deposition (ALD) HfSIO and HfO, were
deposited on a SIO, interface. N was placed in the films with
either a) thermal processes or b) plasma processes. A
10 nm metal gate electrode was deposited and then capped with
100 nm amorphous Si. EOT was extracted from measured
capacitance-voltage (C-V) curves using the North Carolina
State University (NCSU) CVC model. Current-voltage (1¢-V)
characteristics were measured on 10x1um and 10x0.1um
FETs. The Si channel doping for nFETs was ~3x10"" B/cm®.
Mobilities were extracted from 10x1um devices using the
NCSU mob2d model.
3. Resultsand Discussion

Fig. 1 shows X-ray photoelectron spectroscopy (XPS)
results for N* of HfSIO and HfO,. Fig 1(a) displays the N 1s
spectrafor HfSIO; Fig. 1(b) displays the N 1s spectra for HfO,.
The results show increasing amounts of N in these dielectrics
and that N is likely bonded as both Hf-N and Si-N. The N
profile is important for device performance [7]. Fig. 2 shows
secondary ion mass spectroscopy (SIMS) N profiles using
plasma pressure as the parameter. At high N* pressure, the N
peak is closer to the Si substrate. Therefore, low pressure N*
was implemented and yielded results shown in Fig. 3. Low
pressure N* results in better peak mobility at a given EOT,
consistent with the SIM S result. With an optimized N* process,
thermal nitridation and N* were compared over a common N
dose range. Fig. 4 shows that N* enables better mobility than
thermal nitridation for a given N dose. This 3-5% improvement
for N* over therma N is consistent with previous results for
HfSION/PolySi [2]. Charge pumping results (Fig. 5) suggest
that N* results in fewer interface traps than thermal nitridation.

For low frequencies, such as 1000Hz, the charge pumping
technique is sensitive to the Si/dielectric interface. An almost
100x improvement in trap density (N;) is observed for N* at
1000Hz. This result is consistent with the SIMS N profile in
Fig. 2 and mobility datain Fig. 4.

Because of promising results obtained with HfSIO,
optimized N* processes were applied to HfO,. Transistor C-V
characteristics of plasma nitrided HfO, are shown in Fig. 6.
Specific capacitance is improved in both accumulation and
inversion for N*-nitrided devices. EOT improves from 1.06 nm
to 090 nm for the N*-nitrided dielectric. Capacitance
equivalent thickness in inversion (CET;,,) improves to 1.40 nm
for the N*-nitrided sample. Flatband voltage is unchanged,
suggesting the Si/dielectric interface is unperturbed by N, in
agreement with SIMS. The scaling benefit of N* is illustrated
in Fig. 7. Approximately 0.1 nm EQOT scaling is achieved with
nitrided HfO, at a constant leakage current relative to stacks
without N*. At EOT=0.9 nm, nearly 1000x leakage current (J,)
reduction is achieved relative to SiO,/PolySi.

Fig. 8 shows HfO, mobility improvement due to
scaling and HfO,+N* results on scaled HfO,. Mobility does not
significantly change with N* as EOT scalesto 0.90 nm. Fig. 9
shows mobility as a function of effective field. Scaling to
0.82 nm shows peak mohility loss possibly due to coulomb
scattering. Fig. 10 compares drain current-gate voltage (1¢-Vg)
in the linear (V¢=0.050V) and saturation (V4=1.2V) regimes for
HfO, with and without N*. HfO, + N* scales EOT and CET;,,
~0.15 nm (Fig. 6), but with a small mobility penalty (Fig. 9).
Despite the penalty, nFET drive current improves ~8% (lqsx)
and ~3% (lq,in) due to CET;,, scaling from N*. pFET drive
current is nearly unchanged, suggesting that the pFET may be
more sensitive to N [5, 6]. Fig. 11 suggests that N* is favorable
for sub-1 nm EOT with >80% mobility. Fig. 12 shows that
V1 stability is similar for HfO, with and without N*.

4. Conclusions

Plasma nitridation is a promising option to continue high-
k/metal gate stack scaling below EOT=1.00 nm. Optimizing N
dose and profile can improve electron mobility and N;;, relative
to thermal nitridation. Our results show that N*-treated HfO,
scales EOT=0.90 nm with 81% univ. SiO, mobility (1 MV/cm).
Scaling to 0.9 nm results in a small mobility loss, but ~8%
NFET |4 improvement.
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Figure 1. Si 2p & N1 XPSfor N* treated (a) HfSO
and (b) HfO,. Samples were capped with MeN/a-
Si, annealed (1000°C-5s), etched before analysis.
Hf-N and Si-N may exist in both (a) and (b).
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Figure 4. Comparison of thermal and N* showing
that for agiven N composition, a small improvement
in mobility may be achieved with N*.
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Figure 7. Scaling advantage of HfO, + N* relative to
HfO, with thermal nitridation (TN). N* allows 0.1 nm
of EQT scaling at constant leakage current. ~1000%
reduction vs. SIO,/PolySi.
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Figure 10. Id-Vg for HfO, (lines) and HfO, +N*
(symbols). Scaling the EOT results in nFET Id
improvement in both linear and saturation regions,
despite mobility trade-off. Datafrom 10x0.1 um FETSs.
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Figure 2. SIMS N profile for N* nitrided HfSiO. With
decreasing pressure, the interfacial N feature moves
away from the Si/dielectric interface.
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Figure 5. N;; as a function of frequency. Low
frequency (1000 Hz) estimates Nj near the
Si/dielectric interface. Lower N;, for N* suggests a
better interface explaining mobility result.
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Figure 8. Scaling HfO, thickness can improve
mobility, but N* and optimized metal gate electrode
provides further advantage enabling similar
mobility but at EOT=0.90nm.
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Figure 11. Mobility response to EOT scaling for
multiple scaling methods. N* (black circles)
moves scaling off recent trend (gray) and is
superior to alternative scaling methods (black
triangles).
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Figure 3. Electrical confirmation that lower

pressure N* is desired for improved NFET
mobility at agiven EOT.
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Figure 6. nFET C-V characteristics. The N*

process improves accumulation and inversion
capacitance without significant shift in V.
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Figure 9. Mobility response to plasma nitridation.

HfO, (1.06nm) is capable of peak and high field

mobility smilar to SION, while N* scaling to 0.9
nm shows a small trade-off.
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Figure 12. Constant Voltage Stress at 23°C and
1.8V. Threshold voltage (V) stability is
similar with and without N*. HfO, thickness is
constant in both cases, possibly dominating the
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