Optimization of Hafnium Zirconate (HfZrO_x) Gate Dielectric for Device Performance and Reliability

R. I. Hegde, D. H. Triyoso, S. Kalpat, S. B. Samavedam, J. K. Schaeffer, E. Luckowski, C. Capasso, D. C. Gilmer, M. Raymond, D. Roan, J. Nguyen, L. La, E. Hebert, X-D. Wang, R. Gregory, R. S. Rai, J. Jiang, T. Y. Luo, and B. E. White Jr.

Freescale Semiconductor, Inc., Austin Silicon Technology Solutions (ASTS), 3501 Ed Bluestein Blvd., MD: K10, Austin, TX78721, USA (Tel: 512-933-7072, Fax: 512-933-6962, Rama.Hegde@Freescale.com)

ABSTRACT

Optimization of ZrO_2 content in $HfZrO_x$ gate dielectric for transistor performance, mobility, reliability, and thermal stability is reported for the first time. Incorporation of ZrO_2 into HfO_2 enhances dielectric constant (K) of resulting $HfZrO_x$ which is associated with structural phase transformation from monoclinic to tetragonal. The tetragonal phase increases K of $HfZrO_x$ to a large value as predicted.

INTRODUCTION

Recently, a novel hafnium zirconate (HfZrO_x) alloy gate dielectric was developed to address the shortcomings of HfO₂ [1]. In this paper a systematic investigation was performed on the dielectric properties of HfZrO_x with Ta_xC_y metal gate as a function of ZrO₂ content. Also, boost in the K value of HfZrO_x dielectric is discussed.

EXPERIMENT

The integration follows a standard CMOS process flow on silicon up to $HfZrO_x$ dielectric deposition. The target 30Å ALD $HfZrO_x$ films with four different levels of ZrO_2 (zero, A, B, and C) were deposited at 300°C on RCA cleaned Si. The precursors used for ALD were $HfCl_4$, $ZrCl_4$, and D_2O . The Ta_xC_y was used as NMOS gate [2]. A commercial CMOS process technology [3] with activation anneal at 1000°C/5s/N₂ was used to fabricate metal gate/high-K stack MOSFETs.

RESULTS AND DISCUSSION

(a)Transistor Characteristics

Figure 1 shows well-behaved NMOSFET C-V characteristics of $HfZrO_x(B)$ and HfO_2 . Compared to HfO_2 , the $HfZrO_x(B)$ has a lower CET_{inv} value. The lower CET_{inv} value is due to higher K of the HfZrO_x(B) compared to HfO₂ as shown in Figure 2. Figure 3 plots gate leakage current density (Jg) as a function of CET_{inv}. As shown, the gate leakage for the $HfZrO_x(B)$ devices is over 4 orders of magnitude lower than that of silicon oxynitride. Compared to HfO₂, slightly higher gate leakage current was observed for the HfZrO_x devices. This is due to smaller band gap and lower conduction band offset for HfZrOx than that of HfO2 [1]. The electron mobility evaluation in Figure 4 indicated ~7% increase in peak mobility and ~8% increase in mobility at large inversion (high field) for the HfZrO_x(B) devices compared to HfO₂ control. The hole mobility comparison in Figure 5 showed ~9% increase in peak mobility and ~7% increase in mobility at large inversion charge for $HfZrO_x(B)$ devices. Thus, the $HfZrO_x$ dielectric is attractive candidate for CET_{inv} scaling for high performance and low leakage for low standby power applications. The composition optimization of HfZrOx was performed on long channel transistors fabricated using a shorter flow. Figure 6 shows Hf SIMS depth profiling from the long channel MOSFETs indicating expected levels of ZrO₂ in the HfZrO_x dielectrics. The Table 1 summarizes CET_{inv}, V_t and SS values for the HfZrOx devices with different levels of ZrO2. Compared to HfO2, consistently lower CETinv values were obtained

for HfZrO_x with composition A, B, and C. The K value of HfZrO_x is dependent on $HfZrO_x$ composition as shown in Figure 7 and on HfZrO_x structure as discussed below. In Figure 8, the I_d-V_g characteristics showed that all HfZrOx devices including HfO2 have low SS values of 67-68mV/dec, indicating formation of high quality dielectric/Si interfaces. The cross-sectional TEM micrographs in Figure 9 showed that the HfZrO_x dielectrics are polycrystalline with similar bulk dielectric thickness (26-30Å) and interfacial oxide thickness (~9Å). No interaction between the HfZrOx dielectrics and Si channel was observed after the 1000°C activation anneals. Thus, these HfZrOx dielectrics showed good thermal stability with Si. The normalized transconductance (G_m) characteristics in Figure 10 confirmed higher G_m for the HfZrO_x devices compared to HfO2. The BTI characteristics (PBTI and NBTI) for HfZrOx devices in Figures 11 and 12 showed substantial improvement with ZrO₂ content for NMOS(PMOS) at 1.5V(-2V) stress voltage, respectively. The device performance and reliability improvement is primarily attributed to tetragonal structure of $HfZrO_x$ (see below) with a lower bulk trap density [1].

(b)Boost in Dielectric Constant (K)

The K enhancement for HfZrOx in Figure 2 and 7 comes from structural phase transformation. Figure 13 shows plan view TEM and selected area electron diffraction (SAD) for 40Å HfO2 and HfZrO_x(B) dielectric films after Ta_xC_v gate removal. The TEM data showed smaller and more uniform grains for HfZrO_x(B) compared to HfO₂, consistent with AFM images in Figure 14. The SAD data showed tetragonal grains in HfZrO_x(B) dielectric compared to purely monoclinic in HfO2. Further, thin film XRD results in Figure 15 suggested presence of mainly tetragonal phase for the 40Å HfZrO_x(B) dielectric. The tetragonal ZrO_2 phase is theoretically predicted [4-6] to have higher dielectric constant (K~47) than monoclinic phase (K~20). The improved device characteristics are due to fine grained micro-structure of HfZrO_x with increased grain boundary area that results in less oxygen vacancy. More oxygen in grain boundary will reduce equilibrium concentration of oxygen vacancy in the bulk of the grains.

CONCLUSIONS

Addition of ZrO_2 stabilizes the tetragonal phase and enhances the K value in $HfZrO_x$ devices. The ZrO_2 content needs to be optimized for performance. The $HfZrO_x$ dielectric is an attractive candidate for advanced gate stack applications.

ACKNOWLEDGEMENT

The authors would like to thank Suresh Venkatesan, Director of ASTS, for management support.

REFERENCES

- [1] R. I. Hegde, et al, IEDM, p.39 (2005)
- [2] J. K. Schaeffer, et al, IEDM p.287 (2004)
- [3] A. Perera, et al, IEDM, p.571 (2000)
- [4] H. Kim, et al, J. Mater. Res. 20, 3125 (2005)
- [5] S. Sayan, et al, App. Phys. Letters 86, 152902 (2005)
- [6] X. Zhao, et al, Phys. Rev. B 65, 075105 (2002)

