P-1-10 Improvement of mobility and NBTI reliability in MOSFETs with ALD-Si-nitride/SiO₂ stack dielectrics and p⁺-poly-Si gate

Shiyang Zhu¹, Anri Nakajima¹, Takuo Ohashi² and Hideharu Miyake²

¹Research Center for Nanodevices and Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima 739-8527,

Japan, Phone: 81-824246274, Fax: 81-824243499, E-mail: nakajima@sxsys.hiroshima-u.ac.jp

² Elpida Memory, Inc., 7-10 Yoshikawa-kogyo-danchi, Higashi-Hiroshima 739-0198, Japan

1. Introduction

Nitridation of the thin gate-SiO₂ has been widely adopted in the modern CMOS technology in order to suppress boron penetration from the p⁺- poly-Si gate and increase the oxide permittivity. However, nitrogen incorporation has been found to enhance the negative bias temperature instability (NBTI) of pMOS significantly [1]. The enhancement is found to relate with the N concentration near the SiO₂/Si surface [2-3]. Therefore, the ideal N distribution in the SiON film is 100%N in the upper layer and 0%N in the lower layer. Atomic layer deposition (ALD) of SiN on SiO₂ can realize such an N distribution, and excellent boron suppression and reliability characteristics have been demonstrated [4-5]. In this paper, their carrier mobility and NBTI characteristics are examined, and the advantage of the ALD stack as a suitable gate-dielectric for next generation is cleared.

2. Device fabrication

 P^+ -poly-Si gated p- and n-MOSFETs were fabricated using a standard CMOS process [6]. For the ALD stack, approx. 2.0nm SiN was deposited on 2.0nm base-SiO₂, followed by post-deposition-annealing. For the SiON film, approx. 3.5nm base-SiO₂ was plasma-nitrided to introduce nitrogen with 14% peak concentration. The devices had suffered a heavy thermal budget of 750°C annealing for 60min peculiar to the DRAM fabrication process. The equivalent oxide thicknesses (EOT) of pMOS with SiN/SiO₂, SiON, and pure-SiO₂ dielectrics are 3.9, 3.0 and 3.5nm, respectively, as extracted from the accumulation capacitance. EOT of the corresponding nMOS is approx. 0.2nm thicker due to the poly-Si depletion effect.

3. Results and discussion

Fig. 1 shows the I_d - V_g curves measured at $|V_d| = 50mV$ for devices with $W/L = 10\mu m/10\mu m$. V_{th} shifts to positive significantly for the SiO₂ and SiON devices compared to the ALD-SiN/SiO₂ devices. While, the n⁺-poly-Si gated devices have similar V_{th} (not shown here). Therefore, the positive V_{th} shift in Fig. 1 can be ascribed to the boron penetration caused by the heavy thermal budget. As expected, the SiN/SiO₂ stack can suppress the boron penetration more effectively than the plasma-nitrided SiON film.

Figs. 2 and 3 show the DCIV curves measured at $|V_s| = |V_d| = 0.3V$ on devices with area of $1.2 \times 10^5 \mu m^2$. The interface trap density (N_{it}) of pMOS extracted from the DCIV peak height is approximately 0.57, 0.66, and 1.42×10^9 cm⁻² for the ALD stack, plasma-nitrided-SiON, and pure-SiO₂ devices, respectively. For nMOS, the corresponding N_{it} is 1.08, 1.21, and 11.5×10^9 cm⁻² respectively. For both p- and n-MOSFETs, the ALD stack devices have the lowest N_{it} value, and the pure-SiO₂ devices have the largest N_{it} value. It indicates that the boron penetration can increase the interface trap density, especially for the n-MOSFETs.

Figs. 4 and 5 show the electron and hole mobility extracted from the n- and p-MOSFETs using the split C-V method. In consistence with the N_{it} data, the ALD stack devices have the highest carrier mobility and the pure-SiO₂ devices have the smallest mobility. For hole mobility, the difference is small due to the relatively small difference in N_{it} (about 2 times). For the ALD stack without the heavy thermal budget, the hole mobility was reported to identical as the pure-SiO₂ ones [7]. On the other hand, the difference of electron mobility is quite large due to the significant difference in N_{it} (about 1 order of magnitude). Moreover, for the SiON devices, the effect of a long-range dipole field of the Si-N bonds near the SiON/Si interface may also reduce the electron mobility besides N_{it} [8].

Fig. 6 shows the time evolution of ΔV_{th} of pMOSFETs under NBT stress. For the SiON and pure-SiO₂ devices, ΔV_{th} is negative and approximately obeys the power-law dependence with the exponent around 0.25. Such a negative ΔV_{th} under NBT stress has been widely attributed to the interface trap and/or positive charge generation originated from dissociation of Si-H bonds at the SiO₂/Si interface [3]. Taking the V_{th} difference into account, NBTI of the SiON devices is much larger than that of the pure-SiO₂ ones, which has been ascribed to the higher density of the defect precursors (Si-H bonds) at the SiON/Si interface [2]. On the other hand, the ALD stack device shows an abnormal NBTI behavior: V_{th} shifts to positive at the beginning of stress, and then shifts to negative. The value of ΔV_{th} at the longer stress times is close to that of the pure-SiO₂ ones.

The initial positive jump of ΔV_{th} is more obvious for the smaller EOT ALD-stack devices. Fig. 7 shows the time evolution of ΔV_{th} of ALD-2.0nm-SiN/0.5nm-SiO₂ devices under NBT stress with different Vg. Fig. 8 shows the corresponding interface trap generation. The initial positive ΔV_{th} jump increases with $|V_g|$, and the negative ΔV_{th} rate at the longer stress times also increases. On the other hand, ΔN_{it} increases continuously with time approximately following the power-law dependence but with the exponent increasing with $|V_g|$. The above phenomena suggest there are electron traps in the stack film, most probably at the SiN/SiO₂ interface. The traps are neutral before stress, while can be occupied by electrons tunneling from the gate under the negative V_g bias to make ΔV_{th} positively shift, as shown in Fig. 9. Meanwhile, the degradation at the SiO_2/Si interface (to make ΔV_{th} negatively shift) is similar to that of the pure-SiO₂ device due to the absence of N in the interface. While, the negatively charged bulk traps can enhance the electrical field at the SiO₂/Si interface, resulting in faster degradation rate at higher |Vg| for the ALD stack device. At low |V_g| (real operation voltage), on the other hand, the neutralization effect may make its net ΔV_{th} even smaller than that of the pure-SiO₂ device.

In conclusion, we clearly show that the ALD stack gate

dielectrics offer the lowest interface trap density and highest carrier mobility compared with the SiON and pure-SiO₂ gate-dielectrics due to the effective suppression of boron penetration by the 100%N in the upper SiN layer. The 0%N at the SiO₂/Si interface makes its NBTI is somewhat similar to that of the pure-SiO₂ except an initial positive ΔV_{th} jump due to electron trapping in the SiN/SiO₂ interface. Therefore, the ALD stack is a very promising gate-dielectric.

Acknowledgements: This work was supported in part by the 21st Century COE program "Nanoelectrics for Tera-Bit Information Processing" from the Ministry of Education,

Fig. 1 I_d -V_g curves of p- and n-MOSFETs Devices with W/L=10 μ m/10 μ m measured at |Vd|=50mV.

Fig. 4 Hole mobility extracted using a split C-V method for devices with ALD SiN/SiO_2 stack, plasma-nitrided SiON, and pure-SiO₂ gate-dielectrics.

Fig. 7 The time evolution of ΔV_{th} for pMOSFETs with the ALD SiN/SiO₂ stack gate-dielectrics under NBT stress with V_g from -3.5V to -5.5V.

Fig. 2 DCIV curves of a pMOSFETs with ALD SiN/SiO₂ stack, plasma-nitrided SiON, and pure-SiO₂ gate-dielectrics. Devices with $A=1.2\times10^5\mu m^2$ were measured at $V_s=V_d=-0.3V$.

Effective electric field E_{eff} (MV/cm) Fig. 5 Electron mobility extracted using a split C-V method for devices with ALD SiN/SiO₂ stack, plasma-nitrided SiON, and pure-SiO₂ gate-dielectrics.

Fig. 8 The time evolution of the corresponding ΔN_{it} extracted from DCIV. The solid lines are fitting lines based on the power-law dependence. The exponent increases slightly with $|V_g|$ increasing.

Culture, Sports, Science and Technology.

References

- [1]N. Kimizuka, et al., IEDM Tech. Dig. (2000) p.92.
- [2]C. H. Ang, et al., Jpn. J. Appl. Phys., 41(2002), p.L314.
- [3] S. Zhu, et al., J. Appl. Phys., 98(2005), Art.No.114504.
- [4] A. Nakajima, et al, IEEE EDL, 26(2005), p.538.
- [5] A. Nakajima, et al., Microelectron. Reliab., 42(2002) p.1823.
- [6]K. Saino, et al, IEDM Tech. Dig. (2003) p.415.
- [7]A. Nakajima, IEEE EDL, 24(2003), p.472.
- [8] A. Nakajima, Jpn. J. Appl. Phys., 44(2005), p.L903

Fig. 3 DCIV curves of a nMOSFETs with ALD SiN/SiO₂ stack, plasma-nitrided SiON, and pure-SiO₂ gate-dielectrics. Devices with $A=1.2\times10^5 \mu m^2$ were measured at $V_s=V_d=0.3V$.

Fig. 6 The time evolution of ΔV_{th} for pMOSFETs with various gate-dielectrics under NBT stress at T=125°C and $|V_g-V_{th}| \approx$ 3.8V. The solid lines are fitting lines based on the power-law dependence. The exponent is around 0.25.

Fig. 9 Illustration of band diagram of the SiN/SiO_2 stack under negative bias showing the existence of electron traps at the SiN/SiO_2 interface, which can be occupied by electrons tunneling from the gate.