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1. Introduction 
The research topics of high-k gate dielectric proc-

esses are the key technology for the nano-scale MOS de-
vice in IC.  The nitridation treatments on silicon surface 
and ultra-thin gate dielectric are very important for these 
researches [1].  To improve the electrical properties and 
the thermal stability of high-k gated MOS devices, the op-
timal surface nitridation at silicon surface should be devel-
oped.  This is because the diffusion of impurity in gate 
dielectric can be clearly suppressed and the interfacial ox-
ide formation from the out-diffusion of oxygen in Si wafer 
can be decreased by a nitridation treatment at Si surface [2].  
Thus a nitridation treatment at Si surface followed by 
high-k deposition is helpful to improve the thermal stability 
and decrease the interfacial oxide formation.  Recently, 
plasma immersion ion implantation (PIII) is a promising 
technique for atom incorporation [3,4], which possesses 
several advantages such as high-dose, shallow depth, low 
damage, high-dose range, and precise depth, etc.  There-
fore, the nitridation at silicon surface by PIII and the nitro-
gen incorporation on the electrical properties of MOS de-
vices with high-k gate dielectric deserve to investigate.  In 
this work, the nitridation at silicon surface by PIII and the 
electrical characteristic improvement of high-k gated MOS 
devices have been studied.  The physical correlation be-
tween nitrogen concentration profile at Si surface and the 
electrical properties of MOS devices is discussed as well. 

 
2. Experimental 

MOS capacitors fabricated in this work were 
TaN/HfOxNy/Si structures. A screen oxide was formed on 
some wafers before nitrogen implantation. The ion energies 
for PIII were 5 kev ~ 20 kev and the implantation times for 
it were 5~60 min.  An annealing was performed at 850 oC 
after PIII.  The HfxNy (~2.0 nm) gate dielectric was de-
posited by a reactive dc magnetron sputtering with 99.99% 
pure Hf target in Ar/N2 = 24 /36 sccm, Power = 100 W, 
Pressure = 7.6 mTorr. Then, a post-deposition-anneal 
(PDA) at 850 oC in N2 gas for 30 s was performed to form 
HfOxNy (~4.5 nm). 
 
3. Results and Discussion 
   Fig. 1 shows C-V curves for high-k gated MOS devices 
with Si surface nitridation by PIIII at two energies, indicat-
ing the interface quality is satisfactory.  Fig. 2 depicts the 
leakage current density and effective oxide thickness (EOT) 
for high-k gated MOS devices with various Si surface ni-

tridation.  The leakage current density for samples with Si 
surface nitridation by PIII is clearly lower than the other 
ones.  Besides, the EOT for samples with Si surface nitri-
dation by PIII is slightly thicker than those by thermal proc-
ess. The hysteresis-induced flatband voltage shift ∆VFB for 
high-k gated MOS devices with various nitridation at Si 
surface is shown in Fig.3.  The hysteresis is slightly in-
creased for sample with surface nitridation. Fig. 4 shows 
interface trap density Dit for all samples.  A lower Dit is 
obtained for sample nitrided by PIII at a low energy or us-
ing a screen oxide. 

Fig. 5 illustrates the stress-induced flatband voltage 
shift (∆VFB) for high-k gated MOS devices with various 
nitridation at Si surface.  It is clear that a decrease of ∆VFB 
can be achieved by a rich thermal nitridation at Si surface.  
The stress-induced ∆VFB for sample nitrided by PIII is kept 
at almost zero.  It is also seen in Fig. 6 that stress-induced 
leakage current is significantly decreased by surface nitri-
dation by PIII.  Thus, the nitridation treatment at Si sur-
face by PIII is a promising technique to improve the 
hot-electron-related reliability of high-k gated MOS device. 

Based on the electrical characteristics mentioned above, 
MOS device with nitridation at Si surface by PIII at a lower 
energy and for a short time demonstrates clear improve-
ment on reliability and Dit, and it shows comparable prop-
erties in EOT, leakage current, and hysteresis. 

Fig. 7 plots the depth profiles of nitrogen for samples 
with Si surface nitridation by PIII at various ion energies 
and/or for various implantation times.  It is clear that a 
higher ion energy or a longer implantation time results in a 
deeper profile.  Contrarily, a low ion energy and a short 
implantation time for PIII can form a shallow depth profile. 
 
3. Conclusion 

In summary, the electrical characteristics of high-k 
gated MOS devices are improved by a nitridation treatment 
using PIII at a low ion energy and for a short implantation 
time.  Experimental results suggest that a shallow nitrogen 
profile at Si surface is promising for further enhancement 
of device properties. 
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Fig. 1  C-V curves for high-k gated MOS devices with various 
nitridation at Si surface by PIII 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2  The leakage current density and EOT for high-k gated 
MOS devices with various nitridation at Si surface 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3  The hysteresis-induced flatband voltage shift ∆VFB for 
high-k gated MOS devices with various nitridation at Si surface 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4  The interface trap density Dit for high-k gated MOS de-
vices with various nitridation at Si surface 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5  The stress-induced flatband voltage shift ∆VFB for high-k 
gated MOS devices with various nitridation at Si surface 

                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6  The stress-induced leakage current (SILC) for high-k 
gated MOS devices with various nitridation at Si surface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7  The depth profiles of nitrogen for samples nitrided by PIII 
(a) at 5 kV for various time, (b) at 5 kV and 10 kV for 5 min, (c) 
at 10 kV for various time, and (d) at various energies for 60 min, 
analyzed by secondary ion mass spectroscopy (SIMS). 
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