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1. Introduction 

Metal gates are required to boost transistor performance for 
the 32 nm complementary metal-oxide-semiconductor (CMOS) 
technology node and beyond.  Interdiffusion of metal layers is 
one of the approaches explored for the realization of dual work 
function metal gate technology.  Interdiffusion of Ni-Ti [1], Ni-
Al [2], Ti-Pt, and Ti-W [3] has been reported.  Recently, work 
function Φm tunability was achieved by inserting thin metal 
layers at the metal gate/dielectric interface [3]-[4]. Therefore, 
to achieve a well-controlled gate Φm with minimum spatial 
non-uniformity, thin metal layers with accurate thicknesses 
should be used for metal interdiffusion.  In this work, we 
investigate the interdiffusion of thin metallic layers (≤10 nm) 
for work function modulation, employing elemental metal (Ni, 
Pt and Hf) and metal alloys (Ni-Hf and Pt-Hf). The 
dependences of Φm on metal thickness ratios and anneal 
temperatures were also investigated.  

2. Experiment 
The integration scheme for realizing dual gate work function 

using metal interdiffusion is shown in Fig. 1.  The fabricated 
MOS capacitors employed either a SiO2 gate dielectric (4 – 8 
nm) or a HfO2 (2 nm)/SiO2 (4 – 8 nm) dielectric stack.  The 
gate electrode comprises a bottom-most metal 1 layer on which 
a metal 2 layer is deposited.  Table I shows the various 
combinations of the metallic materials investigated.  In one set 
(shaded), metal 1 is a higher Φm metal, while metal 2 is a lower 
Φm metal.  In another set (unshaded), metal 1 is a lower Φm 
metal alloy, while metal 2 is a higher Φm metal.  Different 
metal 2/metal 1 thickness ratios (TMetal2/TMetal1) were used.  All 
metals and metal alloys were deposited by sputtering and co-
sputtering, respectively.  Reactive-sputtered TaN (~100 nm) 
was used as the capping layer.  After gate patterning, forming 
gas anneal (FGA) at 420 °C for 30 min or rapid thermal 
annealing (RTA) at 500 – 700 °C for 30 s in N2 ambient was 
performed for metal interdiffusion.  The atomic concentrations 
of Ni0.66Hf0.34 and Pt0.71Hf0.29 alloys (used for metal 1) were 
obtained by X-ray photoelectron spectroscopy (XPS).  For 
example, the XPS spectra of Ni 2p and Hf 4f peak from 
Ni0.66Hf0.34 alloy is shown in Fig. 2. 

3. Results and Discussions 
Interdiffusion of Hf/Ni and Ni/Ni-Hf Stacks 

Fig. 3 (a) shows the C-V curves of Hf/Ni interdiffused stacks 
after FGA.  Fig. 4 (a) and (b) shows the secondary ion mass 
spectroscopy (SIMS) depth profile of a Hf/Ni stack before and 
after FGA.  By increasing the Hf/Ni thickness ratio (THf/TNi), 
the flatband voltage VFB decreases with respect to that of the Ni 
stack.  We found that the interdiffused layer has a higher Hf 
content when the THf/TNi ratio is larger.  In the case of the 
Ni/Ni-Hf stacks, however, varying of the TNi/TNiHf ratio did not 

result in a significant VFB shift as compared to that of the Ni/Hf 
stack [Fig. 3 (b)].  The SIMS profile of Ni/Ni-Hf stack (not 
shown) indicated minimal Ni diffusion after FGA.  Hf/Ni and 
Ni/Ni-Hf stacks exhibited similar VFB shifts after 500 °C RTA. 

Interdiffusion of Hf/Pt and Pt/Pt-Hf Stacks 
Hf/Pt and Pt/Pt-Hf stacks were investigated and their C-V 

curves after FGA are shown in Fig. 5.  VFB shifts for both stacks 
(compared with Pt or Pt-Hf gates) indicated that interdiffusion 
had taken place.  Hf/Pt and Pt/Pt-Hf stacks were also subjected 
to higher RTA conditions due to their better thermal stability. 
Fig. 6 generally shows that larger VFB shifts are observed at 
higher anneal temperatures.  This is attributed to more 
interdiffusion occurring between the metal layers. 

Summary of Extracted Φm
VFB and equivalent oxide thickness Tox obtained from the C-

V curves were plotted to extract the metal gate Φm (Fig. 7).  Φm 
variation for Hf/Pt and Pt/Pt-Hf stacks subjected to different 
anneal conditions, was also observed from the VFB vs Tox plots 
(Fig. 8).  Fig. 9 shows the Φm tunability of the metal stacks.  
After FGA, the Φm of Hf/Ni interdiffused stack was tuned 
down from 4.74 eV (Ni stack) to 4.20 eV by varying the THf/TNi 
ratio.  After 700 °C RTA, Hf/Pt (Φm = 4.55 eV) and Pt/Pt-Hf 
(Φm = 4.90 eV) interdiffused stack gave the largest Φm shift 
(~0.5 eV) from their respective single layer gate stack. Finally, 
Fig. 10 shows the Φm of Ni, Pt, Ni-Hf and Pt-Hf gate stacks on 
both SiO2 and HfO2 gate dielectrics. This indicated that work 
function modulation of interdiffused metal layers can also be 
achieved on HfO2 dielectric. 

4. Conclusions 
Thin interdiffused metal layers (≤10 nm) were implemented 

for Φm modulation.  After FGA, Φm ranging between 4.20 – 
4.74 eV was obtained for a Hf/Ni stack by varying the THf/TNi 
ratio.  Hf/Pt and Pt/Pt-Hf stacks showed better thermal stability 
and gave a Φm difference of ~0.5 eV from their single layer 
stack, after 700 °C RTA.  With further process optimization, 
precise metal gate Φm control for advanced transistor structures 
can be achieved using this dual gate integration technique. 
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Fig. 1: Dual gate work function 
integration scheme making use of metal 
interdiffusion.   

Table I: Experimental splits for MOS 
capacitors with interdiffused metal gates.  
Metal 1 was either a higher Φm metal 
(shaded) or a lower Φm metal alloy 
(unshaded). 
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Fig. 5: C-V curves of Hf/Pt and 
Pt/Pt-Hf stacks after FGA.  TaN-
capped Pt (10 nm) and Pt-Hf (5 
nm) stacks were used as reference. 
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