Low Leakage Current and Low Resistivity p^+n Diodes on Si(110) Fabricated by Ga^+/B^+ Combination I/I and Low Temperature Annealing

Hiroshi Imai¹, Akinobu Teramoto², Shigetoshi Sugawa¹ and Tadahiro Ohmi²

¹Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

²New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan Phone: +81-22-795-3977 Fax: +81-22-795-3986 e-mail: imai@fff.niche.tohoku.ac.jp

I. Introduction

For the improvement of current drivability of MOSFET, CMOS devices fabricated on Si(110) were reported in recent years [1,2]. And new materials such as high- κ gate dielectrics [3] and metal gate electrodes [4] are introduced to FEOL processes to overcome the scaling limit. In such cases, low temperature annealing process is necessary, especially low temperature source/drain activation annealing is required.

Solid Phase Epitaxial Regrowth (SPER) is well known way as low temperature source/drain activation technology [5]. However, it was reported in [6] that SPER on Si(110) is more difficult compared with Si(100). Fluorine knocked into amorphous layer formed by BF_2^+ ion implantation (I/I) prevents re-crystallization and activation of the implanted Boron on low temperature annealing [7]. In this paper, we studied other types of p⁺ ion; Ga⁺ I/I and Ga⁺/B⁺ combination I/I on Si(110) followed by low temperature annealing at 550°C.

II. Experimental conditions

Cz, n-type Si(110) with 8-12 [Ω -cm] and Cz, n-type Si(100) with 8-12 [Ω -cm] wafers are employed in the experiment.

To investigate the annealing behavior, Ga^+/B^+ , Ga^+ and BF_2^+ ions were implanted on the bare *n*-Si(110) and *n*-Si(100) wafers followed by annealing at 450°C ~ 550°C. To measure electrical characteristics, 100um × 1000um rectangular p⁺n junctions were fabricated by Ga^+/B^+ implantation followed by annealing at 550°C and fabricated by BF_2^+ implantation followed by 600°C annealing on Si(110) and Si(100), respectively. Each condition of the ion implantation is described in Table I.

TT 1 1 T	G 11.1	c +		•	1
Table I	(onditions	of n	101	1mn	lantation
rable r	Conditions	orp	ion	mp	antation

Types of	Times of I/I					
I/I	1 ^{st.}	2 ^{nd.}	3 ^{rd.}			
	Ga ⁺	Ga ⁺	\mathbf{B}^+			
Ga^+/B^+	5	43	4			
	5×10 ¹³	2×10 ¹⁴	2×10 ¹⁵			
	Ga+	Ga ⁺				
Ga^+	10	36	-			
	1×10 ¹⁵	1×10 ¹⁵				
	BF_2^+		Type of Ion			
$\mathbf{BF_2}^+$	25	-	Energy [keV]			
	2×10 ¹⁵		Dose [cm ⁻²]			

III. Results and Discussions

Figure 1 shows the sheet resistance of Ga^+/B^+ , Ga^+ and BF_2^+ implanted on Si(100) and (110) followed by annealing at 500°C and 550°C as a function of annealing

time. Both Ga^+/B^+ implanted samples on Si(110) and (100) show saturation sheet resistance of below 200 [Ω /sg.] $(164.7 \ [\Omega/sq.] \text{ on Si}(100), 198.7 \ [\Omega/sq.] \text{ on Si}(110))$. The saturation resistance of the p^+ layer on Si(110) formed by Ga^{+}/B^{+} with annealing at 550°C is lower than that of the p⁺ layer formed by BF_2^+ implanted on Si(100). Fig. 2 shows the carrier concentration depth profiles of the Ga⁺/B⁺ implanted on Si(110) sample followed by annealing at 550°C and that of BF₂⁺ implanted sample. The ¹¹B SIMS profile of the Ga^+/B^+ sample is also plotted. Surface carrier concentration of the Ga^+/B^+ implanted sample is higher than 2×10^{20} [cm⁻³]. Figure 3 shows the average regrowth rate of the Ga^+/B^+ and BF_2^+ implanted amorphous layer as a function of annealing temperature. The result shows the SPER rates of Ga^+/B^+ implanted samples are higher than that of BF_2^+ implanted on Si(100) sample. Fig. 2 and Fig. 3 reveal that Ga^+/B^+ implantation without fluorine is very effective for low temperature annealing.

Figure 4 and 5 show the reverse and forward bias J-V characteristics of p⁺n diodes fabricated by Ga⁺/B⁺ implantation on Si(110) followed by annealing at 550°C and formed by BF_2^+ implantation on Si(110) and Si(100) followed by annealing at 600°C, respectively. The reverse bias leakage current of the p^+n diode formed by Ga^+/B^+ implantation on Si(110) sample is less than 4.0×10^{-10} [A/cm²] and the n-value shows ideal characteristic of diffusion current (n=1.00). The Arrhenius plots for the leakage current density measured at -1.00 [V] of the p^+n formed by Ga^+/B^+ implantation on Si(110) and Si(100) followed by annealing at 550°C and BF_2^+ implanted on Si(110) with 600°C annealing samples are shown in Fig. 6. The activation energy of Ga^+/B^+ implanted samples is 1.1 [eV] (= Si band-gap energy) until room temperature. It reveal that the defects in p^+n junction formed by Ga^+/B^+ implantation on Si(110) are annealed out well at 550°C. These show that the ideal p^+n junction can be realized by Ga⁺/B⁺ I/I followed by low temperature annealing at 550 °C. It is very useful for scaling down LSI devices.

IV. Conclusion

We have fabricated p^+n diode on Si(110) formed by Ga⁺/B⁺ combination ion implantation and low temperature annealing at 550°C. The surface carrier concentration of the formed p^+ layer exceeds 2.0×10^{20} [cm⁻³], and which corresponds to below the resistivity of 7.0×10^{-3} [Ω -cm]. The reverse bias leakage current density of the p^+n diode is less than 4.0×10^{-10} [A/cm²] at room temperature (298K). The forward bias current density of the p^+n diode shows ideal diffusion current density.

This paper gives the key technology of fabricating source/drain by low temperature annealing, especially on Si(110) surface. It is very effective for CMOS integration such as including high- κ gate dielectrics and metal gate electrodes in the devices.

Fig. 1. Sheet resistance of Ga^+/B^+ , Ga^+ and BF_2^+ implanted layers on *n*-Si(110) and *n*-Si(100) as a function of annealing time. Sheet resistnce obtained by the Ga^+/B^+ I/I on Si(110) and annealing at 550°C is less than 200 [Ω /sq].

Fig. 3. Annealing temperature dependence of the average regrowth rate of the amorphous layer formed by Ga⁺/B⁺ implantation on *n*-Si(100), *n*-Si(110) and that of the BF₂⁺ on *n*-Si(100). The Average regrowth rate is defined as initial amorphized layer thickness / annealing time just after the saturation point of sheet resistance.

Fig. 5. Current - forward bias voltage characteristics of the p⁺n diodes fabricated by the same conditions as (a) and (c) in Fig.4. The p⁺n diode fabricated by Ga⁺/B⁺ implantation shows ideal n-value = 1.00 and it reveals that the defects in the diode are saficiently annealed out at 550°C.

References

[1]A. Teramoto, et al., IEDM Tech. Dig., (2003) p. 801.
[2]B. Doris, et al., VLSI symp. Tech. Dig., (2004) p. 86.
[3]E. Gusev, et al., IEDM Tech. Dig., (2001) p. 451.
[4]J. K. Schaeffer, et al., IEDM Tech. Dig., (2004) p. 287
[5]B. L. Crowder, J. Electrochem. Soc., 118, (1971) p. 943.
[6]L. Csepregi, et al., J. Appl. Phys. 48, (1977) p. 4234
[7]A. Nakada, et al., J. Appl. Phys. 81, (1997) p. 2560

Fig. 2. Carrier concentration profiles of Ga⁺/B⁺ I/I (plot (a)), BF₂⁺ Implanted (plot (b)) on *n*-Si(110) with annealing at 550°C, respectively. Plot (c) is a SIMS depth profile of ¹¹B on the same condition of the sample (a). The surface carrier concentration of the Ga⁺/B⁺ implanted sample is higher than 2.0×10^{20} [cm⁻³].

Fig. 4. J-V characteristics of the p⁺n diodes formed by Ga⁺/B⁺ I/I on Si(110) followed by annealing at 550°C, by BF₂⁺ I/I on Si(110) with 600°C annealing and that of on Si(100), respectively. The reverse bias leakage current of the diode by Ga⁺/B⁺ I/I on Si(110) is reduced as low as that of 600°C annealing on Si(100) sample.

Fig. 6. Arrhenius plots for reverse-bias current density measured at -1.00 [V] of formed by Ga⁺/B⁺ implantation on Si(110) with 550°C annealing and that of on Si(100), by BF₂⁺ implantation on Si(110) followed by annealing at 600°C, respectively. The junctions fabricated by Ga⁺/B⁺ I/I shows ideal activation energy even below 298[K].