Epitaxial High-K Oxide Metal Gate MOSFETs: Damascene CMP Process Integration and Electrical Results

Ralf Endres, Yordan Stefanov and Udo Schwalke

Institute for Semiconductor Technology and Nanoelectronics, Darmstadt University of Technology Schlossgartenstr. 8, 64289 Darmstadt, Germany Tel: +49 6151 16-3933, Fax: +49 6151 16-5233, E-Mail: endres@iht.tu-darmstadt.de

1. Introduction

Ever increasing gate leakages through ultra-scaled SiO_2 gate dielectrics have led to extensive investigation of alternative materials with higher dielectric permittivity (high-K) in order to extend the unprecedented growth of IC complexity of the last four decades into the future.

Recently, very promising properties of epitaxially grown, crystalline rare-earth metal-oxides have been reported [1] and the integration of Pr_2O_3 dielectric in a conventional polysilicon CMOS process was successfully demonstrated [2]. However, high temperature annealing [3] and aggressive reactive ion etching (RIE) was found to degrade the initial quality of the sensitive high-K gate stack [2]. In order to minimize process induced oxide damage (PIOD), we have integrated crystalline high-K dielectrics into a virtually damage-free replacement gate process [4, 5]. For the first time, fully functional metal gate MOSFETs with crystalline Gd_2O_3 dielectric have been fabricated by means of chemical mechanical planarization (CMP) in a "gentle" damascene metal gate technology.

2. Device Fabrication

The major process steps are shown in Fig. 1. Processing is performed on 4 inch p-type Si (100) wafers. Initially, dummy gate stacks are formed by consecutive deposition, lithography and RIE (Fig. 2a), followed by self-aligned S/D ion implantation. Next, the CVD alignment-oxide is deposited and RTA anneals at 1000°C are performed to activate S/D implants. The oxide is planarized by CMP down to the gate level and the dummy gates are removed completely by wet chemical etching, leaving a self-aligned imprint of the gate stack on the Si-wafer (Fig.2b). Subsequently, crystalline Gd₂O₃ layers of 5.3 nm and 13.5 nm physical thickness are grown by molecular beam epitaxy (MBE) with smooth surface topography and good leakage currents as evident from AFM and C-AFM measurements (Fig. 4). In addition, wafers with conventional SiO₂ are fabricated as a reference. Tungsten is deposited on top of the gate dielectrics and CMP is used to pattern the damascene metal gates. Standard back-end processing completes the fabrication.

3. Results and Discussion

The fabricated devices with Gd_2O_3 gate dielectric and tungsten gate electrode (Fig. 3) are fully functional. CV measurements on Gd_2O_3 capacitors give a dielectric constant of 10.4, corresponding to EOTs of 1.9 nm and 5.1 nm respectively. Leakages are below $1 \cdot 10^{-1}$ A/cm² for the 1.9 nm Gd_2O_3 and $1 \cdot 10^{-3}$ A/cm² for the 5.1 nm,

respectively, (Fig. 5), consistent with leakage requirements set by the ITRS [6].

The Gd₂O₃ gate dielectric nMOSFETs show proper transistor behavior (Fig. 6 and 7). Note that extremely low hysteresis of less than 30 mV is observed in the subVt characteristics (Fig. 7), which is a substantial improvement when compared to conventionally integrated high-K oxides [7]. In the case of process-damaged high-K oxides, large hysteresis effects with Vt-shifts of more than 300 mV have been observed which could be related to a large susceptibility to build-up charge trapping sites [7]. The subVt swing of approximately 130 mV/dec indicates high densities. Charge pumping (CP) interface state measurements revealed trap densities of 2.3.10¹² eV⁻¹cm⁻², consistent with the degraded subVt swing. However, only slightly reduced values of $1.8 \cdot 10^{12} \text{ eV}^{-1} \text{cm}^{-2}$ are obtained for the SiO₂ reference devices which puts in question the effectiveness of the forming gas anneal when using tungsten gates. Energy resolved CP measurements on Gd₂O₃ nMOS devices showed that most of the interface traps are located in the upper half of the band gap (Fig. 8). Effective mobilities of 130 cm²/Vs have been measured for the Gd₂O₃ MOSFETs as shown in Fig. 9. Compared to SiO₂ references this corresponds to a reduction of approx. 40% at the same effective electric field. We suspect that the acceptor-type interface states significantly degrade mobility due to Coulomb-scattering.

4. Conclusion

We have successfully integrated crystalline Gd_2O_3 with EOT of 1.9 nm in a damascene metal gate process. Since the harsh processing is done prior to high-K deposition, PIOD-effects are minimized and the initial material quality of the crystalline high-K gate dielectric is largely preserved, so that the progress in high-K material engineering can be monitored directly at the device level.

Acknowledgements

This work was partially funded by the German Federal Ministry of Education and Research (BMBF) under the KrisMOS project (01M3142C).

References

- [1] H. J. Osten, et al., IEDM 2001.
- [2] U. Schwalke, et al., Proc. ESSDERC, p.247 (2003).
- [3] S.B. Samavedam, et al., IEDM, p.307 (2003)
- [4] A. Chatterjee, et al., IEDM, p.821, (1997)
- [5] A. Yagishi, et al, IEDM, p.785 (1998).
- [6] http://public.itrs.net/Files/2003ITRS/Home2003.htm.
- [7] U. Schwalke et al, Microel. Reliab., 45, 2005.

Fig. 1: Main process modules of the replacement gate technology.

Fig. 2: Atomic force microscopy (AFM) image of a dummy gate structure (a) and a self-aligned imprint of the gate stack on the Si-substrat (b).

Fig. 3: nMOSFET with high-K Gd₂O₃ gate dielectric and tungsten gate electrode realized with the replacement gate process (gate length L= 4 μ m and gate width W= 100 μ m).

Fig. 4: Atomic force microscopy (AFM) image of the Gd_2O_3 surface (left) and nanoscale I-V sweep by conductive atomic force microscopy (C-AFM) measurement (right).

Fig 5: Gate leakage currents of 1.9 nm and 5.1 nm metal gate Gd_2O_3 pMOS capacitors (gate injection, substrate in accumulation).

Fig. 6: Output characteristics of metal gate Gd₂O₃ nMOSFET.

Fig. 7: Subthreshold characteristics of Gd₂O₃ nMOSFET.

Fig. 8: Energy resolved CP measurements on Gd_2O_3 nMOS devices (EOT=5.1 nm).

Fig. 9: Measured effective electron mobilities of damascene metal gate Gd_2O_3 nMOSFETs (EOT=5.1 nm).