Empirical Model of Phonon-Limited Electron Mobility for Ultra-Thin Body SOI MOSFET

Tsuyoshi Yamamura, Shingo Sato, and Yasuhisa Omura

Graduate School of Eng, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan Phone: +81-6-6368-1121 Email: omuray@ipcku.kansai-u.ac.jp

1. Introduction

The two-fluid density-gradient (2FDG) model has made it possible to obtain electron density in the two-fold and four-fold valleys without solving the Schrödinger equation [1]. However, to express the precise drain current (I_d) of MOSFETs more simply in device simulations, empirical mobility models for each valley are needed.

As the first step, we model phonon-limited electron mobility because electron-phonon interaction is a dominant scattering mechanism in a wide range of effective electric fields (E_{eff}) at room temperature; the scattering processes stemming from surface roughness (SR) or interface charges should be taken account of only at either very high or very low fields. As the SOI-layer thickness (T_{SOI}) decreases, the phonon-limited electron mobility (μ_{ph}) significantly varies [2, 3]. Calculations indicate that the variation is due to, in part, the quantum effect. Based on those results, we introduce an empirical model that involves a function of T_{SOI} and E_{eff} .

2. Device structure and simulations

The device structure assumed is the single-gate (G) n-channel SOI MOSFET shown in Fig. 1. As shown in Fig. 1, gate oxide thickness is 3 [nm] and buried oxide thickness is 200 [nm]. Impurity concentrations (N_A) in the SOI-layer and Si substrate are taken to be 5×10^{15} [cm³].

This article simulates the phonon-limited electron mobility in the (100) and (111) Si inversion layers in such ultra-thin body SOI MOSFETs at 300K using a relaxation time approximation based on 1-D self-consistent calculations. The physical parameters used in the calculation are listed in Tables 1 and 2.

3. Results and Discussions

We propose empirical models of phonon-limited mobility in the two-fold valley ($\mu_{ph,2fold}$) and in the four-fold valley ($\mu_{ph,4fold}$). Mobility model for (111) surface is not shown below to save description space.

3.1 Empirical Model of Phonon-Scattering-Limited Electron Mobility in the Two-Fold Valley: (001) surface

$$\boldsymbol{m}_{ph,2 \ fold} = AE_{eff}^2 - BE_{eff} + C , \qquad (1)$$

$$A = \frac{a_1 b_1}{a_1 + b_1}, \quad B = \frac{a_2 b_2}{a_2 + b_2}, \quad C = \frac{a_3 b_3}{a_3 + b_3}, \quad (2a), (2b), (2c)$$

$$\mathbf{a}_{1} = 1.15 \exp\left[\frac{3(T_{SOI} + 4)}{4}\right] + 17$$
, (3a)

$$\boldsymbol{b}_1 = -0.250875 \times T_{SOI} + 215.5 \quad , \tag{3b}$$

 $a_2 = 1.54 \exp(T_{SOI} + 3.5) + 19.0$, $b_2 = 704.2$ (4a),(4b)

$$a_3 = 1.6 \exp[1.23(T_{SOI} + 3.5)] + 150.0$$
, $b_3 = 1108$, (5a),(5b)

<u>3.2 Empirical Model of Phonon-Scattering-Limited</u> Electron Mobility in the Four-Fold Valley: (001) surface

$$\boldsymbol{m}_{ph,4\,fold} = DE_{eff}^{E} \quad , \tag{6}$$

$$D = \frac{\boldsymbol{a}_{4}\boldsymbol{b}_{4}}{\boldsymbol{a}_{4} + \boldsymbol{b}_{4}}, E = \frac{abc}{ab+bc+ca},$$
(7a),(7b)

$$\boldsymbol{a}_4 = 1.15 \exp\left[\frac{(T_{SOI} + 3.3)}{1.1}\right] + 90$$
, $\boldsymbol{b}_4 = 414$.14, (8a),(8b)

$$a = -0.02546 \times T_{SOI} + 0.1, \quad b = -0.113, \quad (9a), (9b)$$

$$c = 0.0000028 \exp(2.3T_{SOI}), \tag{9c}$$

We draw the simulation results of phonon-limited electron mobility in the two-fold valley ($\mu_{ph,2fold}$) and in the four-fold valley ($\mu_{ph,4fold}$) and empirical models, which are shown with parameter of T_{SOI} in Fig. 2 and Fig. 3, respectively. In Fig. 4, we show T_{SOI} dependencies of phonon-limited electron mobility models of (001) and (111) surfaces for comparison. Empirical models for (001) and (111) surfaces accurately reproduce the simulation results such as E_{eff} dependence and T_{SOI} dependence.

When electric field along the channel is assumed to be uniform, drive current (I_d) is approximately expressed by the following equation (10).

$$I_{d} \approx \frac{W}{L} V_{d} \left(q \boldsymbol{m}_{2fold} N_{2fold} + q \boldsymbol{m}_{4fold} N_{4fold} \right), \quad (10)$$

where W is the channel width, L is the channel length, μ is the electron mobility, and N is the surface electron density; the subscripts "2*fold*" and "4*fold*" represent the two-fold valley and four-fold valley, respectively.

Using the electron density obtained from the 2FDG model and the empirical models (equations (1) and (6)), calculated I_d curves for (001) and (111) surfaces vs. gate voltage (Vg) is shown in Fig. 5 for $T_{SOI} = 5$ [nm]; here a metal gate is assumed. As shown in Fig. 5, entire I_d -Vg characteristics are successfully represented. However, the models don't reproduce TCAD simulation result [4], which suggests that the SR model must be included [3].

References

[1] S. Sato and Y. Omura, Jpn. J. Appl. Phys., vol. 45, No. 2, pp. 689-693, 2006.

[2] M. Shoji and S. Horiguchi, J. Appl. Phys., vol. 82, p. 6096, 1997.

- [3] S. Takagi et al., in IEEE IEDM Tech. Dig., p. 219, 1997.
- [4] TCAD/DESSIS operation manual, ver. 7.5, Synopsis.

Fig. 1. Device structure considered.

Table. 1. Physical parameters used in the present calculations.

Parameters		Values	[unit]
$====$ m_0	free electron mass	9.11x1	0^{-31} [kg]
m	longitudinal effective mass		$0.98m_0$
mt	transverse effective mass		$0.19m_0$
m _{d2}	density-of-state mass in two-fold	ł valley	$0.19m_0$
m_{d4}	density-of-state mass in four-fold	d valley	$0.43m_0$
m_{c2}	conductivity mass in twofold v	alley	$0.19m_0$
m _{c4}	conductivity mass in fourfold v	alley	$0.32m_0$
ρ	crystal density	232	9 [kgm³]
S_1	sound velocity	9037	[ms ⁻¹]
Dac	acoustic deformation potential	12	2.0 [eV]

|--|

Type of inter-valley Scattering	phonon energy	deformation potential	
	E_k [meV]	$D_k [x10^8 \text{ eVcm}^{-1}]$	
f	19.0	0.3	
f	47.4	2.0	
f	59.0	2.0	
g	12.1	0.5	
g	18.5	0.8	
g	62.0	11.0	

Fig. 2. E_{eff} dependence of phonon-limited electron mobility in the two-fold valley and in inversion layer on (111) surface.

Fig. 3. E_{eff} dependence of phonon-limited electron mobility in the four-fold valley.

Fig. 4. T_{SOI} dependencies of phonon-limited electron mobility for (001) or (111) surface.

Fig. 5. Calculated I_d versus V_g in SOI MOSFETs with 20-nm thick SOI-layer. L = 500 [nm], W = 1 [µm], V_d =0.1 [V]