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1 Introduction
The development of robust face recognition systems is

quite essential in a variety of applications such as intelligent
human-computer interfaces, security systems, and so forth.
Real-time human face recognition, in particular, plays an im-
portant role in establishing user-friendly interfaces between
humans and computers. Pseudo two dimensional (2D) Hid-
den Markov Models (HMM) are one of the statistical clas-
sifiers successfully applied to face recognition. In our pre-
vious work [1], the robust nature of the pseudo-2D HMM-
based face recognition system employing the edge-based fea-
ture vectors has been demonstrated. In order to realize a real-
time-responding low-power embedded face recognition sys-
tem, the development of VLSI hardware is quite essential. We
have already developed the dedicated VLSI chip [2] which
takes only 0.23ms for edge-based feature vector generation of
an entire image. Therefore, a hardware implementation of the
pseudo-2D HMM classifier is essential for realizing a real-
time-responding face recognition system.

Several researchers have already realized 1D HMM-based
speech recognition systems on VLSI hardware since the
Viterbi algorithm, which obtains the maximum-likelihood
path among all state transitions within the HMM to the in-
put vector sequence, is suitable for parallel processing. These
works implement multiple processor elements (PE’s) in a
chip, each of which contains a Viterbi decoder and a calcu-
lator of the observation probability function. In Ref. [3], a
Gaussian distribution function which is most widely utilized
in various applications is employed for the observation prob-
ability function. This is not appropriate for our purpose be-
cause calculating the Gaussian distribution requires multipli-
ers for every PE’s, making their area quite large. Ref. [4] uti-
lizes a discrete density function. Although this reduces the
area of PE, it makes the accuracy of recognition worse. There-
fore, another type of distribution function which is suitable for
hardware implementation and approximates the Gaussian dis-
tribution function is required.

The purpose of this paper is to present the hardware archi-
tecture for a pseudo-2D HMM-based image recognition sys-
tem. For reducing the area of PE’s, the Laplace distribution
function which can be calculated without multipliers is intro-
duced to the observation probabilities. In order to prove the
concept, the face recognition system has been implemented
on a Field Programmable Gate Array (FPGA) and the perfor-
mance of face recognition has been demonstrated.

2 Pseudo-2D Hidden Markov Models
The pseudo-2D HMM, which has been introduced by Kuo

and Agazzi [5] to process 2D images with HMM, consists of
a set of super states each of which contains a 1D HMM within
themselves. The pseudo-2D HMM is utilized for modeling
facial images in a hierarchical manners as in the following.
Several super states correspond to the vertical facial features,

such as forehead, eyes, nose, and mouth as illustrated in Fig. 1.
Each state within the super state is utilized for modeling the
horizontal sequence of localized features. As shown in Fig. 1,
a 6×6-state left-right model is utilized in this work. The block
diagram of the whole system is illustrated in Fig. 2. The sys-
tem composes six sets of the embedded HMM module and
Viterbi decoder. The embedded HMM consists of six sets of
PE which corresponds to an embedded sate and contains the
observation probability calculator and Viterbi decoder.

Viterbi Algorithm
The Viterbi algorithm computes the state sequence which

maximizes the output probability efficiently. We define the
value δt( j) which is the maximum probability in j-th state at
time t. For each time the feature vector is inputed, δt( j) is
computed recursively as follows:

δt( j) = max
i= j−1, j

[δt−1(i)ai j]b j (ot) (1)

where ai j is the transition probability from i-th state to j-th
state and b j(o) is the observation probability function at j-th
state. By taking the logarithm of (1), δt( j) is calculated as

logδt( j) = max
i= j−1, j

[logδt−1(i)+ logai j]+ logb j (ot) . (2)

This means that logδt( j) can be computed by only accumula-
tors and a comparator with logai j stored in the memory and
logb j(ot) provided by the observation probability calculator
as shown in Fig. 3.

Observation Probability Function
A Gaussian distribution function is often utilized for

the observation probability function. For uncorrelated sin-
gle m-dimension Gaussian distribution, the probability func-
tion b j(ot) and the logarithm of it are given by
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where µ = {µi} and σ = {σi} are the mean vector and stan-
dard deviation vector obtained by learning, respectively. In
this work, a Laplace distribution function is introduced to the
observation probability. The Laplace distribution function and
the logarithm of it are expressed as follows:
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Assuming all standard deviations of feature-vector elements
are equal, (6) is simplified with constant values α and C as

logb j(ot) = α
m

∑
i=1

|oi −µi|+C. (7)

In (7), the constant value C can be eliminated since it does not
affect the result of Viterbi path search. Hence, the observation
probability is obtained by only calculating the Manhattan dis-
tance between the feature vector o and the mean vector µ . The
parameter α is determined to maximize the dynamic range of
the output metrics under finite precession.

3 FPGA Implementation and Performance Evaluation
The proposed architecture has been implemented on an

Altera Cyclone FPGA (EP1C12Q240C6). The recognition
performance of the system was evaluated on the AT&T face
database [6] which contains 10 different images for each of
40 people. For each person, the face model is learned from
nine images of the same person. The recognition rate was
evaluated on the images excluded in the training. The de-
tails of face recognition algorithm are described in Ref. [1].
The recognition rates with different bit widths of data were
shown in Fig. 4. When no less than 8-bit data precision was
employed, the recognition rate of over 97% was obtained. Ta-
ble 1 shows the specification of the recognition system when
the data bit width is 8. The processing time for identifying an
face image from 40 people was 44.2ms at a 100MHz clock
frequency. The chip size was about 62 kilo logic gates and
reduced by 47% from the one employing the Gaussian distri-
bution function.

4 Conclusion
The hardware architecture of the face recognition system

employing the pseudo-2D HMM has been proposed. In order
to reduce the area of PE, the Laplace distribution function has
been introduced to the observation probabilities. The system
has been implemented on the FPGA, and the performance of
the system has been successfully demonstrated.
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Table 1 Specification of FPGA implementation.

# of PE’s 36 # of Gates 62,000
Data Precision 8bits Processing Time 4.42ms

Clock Freq. 100MHz Power 475mW
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Fig. 1 Pseudo-2D Hidden Markov Model.
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Fig. 2 Block diagram of pseudo-2D HMM system.
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Fig. 3 Block diagram of Viterbi decoder.
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Fig. 4 Chip size and recognition rate on AT&T face database.
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