
A Hardware-Implementation-Friendly PCNN for  
Analog Image-Feature-Generation Circuits 

 
Jun Chen1 and Tadashi Shibata2 

 
1Dept. of Electronic Engineering, Univ. of Tokyo, 2Dept. of Frontier Informatics, Univ. of Tokyo 

5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan 
Phone: +81-4-7136-3851 Fax: +81-4-7136-3852 E-mail: chenjun@else.k.u-tokyo.ac.jp, shibata@ee.t.u-tokyo.ac.jp 

 
1. Introduction 

Pulse-Coupled Neural Networks (PCNNs) are neural 
models initially introduced for modeling cat’s visual cortex 
and developed for high-performance biomimetic image 
processing [1]. It has been shown that PCNNs are highly 
effective tools for image recognition, featuring significant 
merits of robustness against noise, independence of geo-
metric variations in input patterns, etc [1][2]. 

However, conventional PCNNs are software-orientated 
models that are too complicated to implement as VLSI 
hardware. To employ PCNNs in image recognition VLSIs, 
a hardware–implementation-friendly PCNN model is pro-
posed here. Two new concepts have been introduced in the 
model: pulse output with an exponentially-decaying tail, 
and one-branch dendritic tree. The functions of these two 
concepts can greatly simplify the PCNN without compro-
mising its performance for image feature generation.  

A novel analog image-feature-generation circuit based 
on the model is proposed. Autonomous running and volt-
age-mode operation are two features of the circuit. More-
over, the image features generated by the circuit are preci-
sion-controllable and are independent of the rotation and 
translation of input patterns. The superior performance of 
the circuit has been verified by SPICE simulations based on 
standard 0.35µm CMOS technology. 

 
2. Hardware-Implementation-Friendly PCNN 

The PCNN is composed of a 2D array of out-
put-coupled neurons. Each neuron receives the outputs of 
its nearest-four neighbors as local stimuli, as well as the 
intensity of its corresponding pixel in an input image as an 
external stimulus. Fig. 1 illustrates the differences in neu-
ron structure between conventional PCNNs [1] and the 
newly-proposed hardware-implementation-friendly PCNN. 
In the conventional model, the neuron’s output is a se-
quence of pulses. When the pulse enters other neurons as a 
local stimulus, it is converted to an exponentially-decaying 
input by convoluting it with an exponential function. The 
circuit implementation of such conversion would be highly 
complicated. In the new model, however, the neuron’s 
output is a sequence of pulses with exponentially-decaying 
tails. Such output can enter other neurons without any con-
version and can easily be implemented with a switched-RC 
circuit described later. In the conventional model, the den-
dritic tree is divided into two braches: a primary branch (F) 
and a secondary branch (L), which are then combined in the 
form of (1 )F Lβ+ . On the other hand, the dendritic tree in  

 
Fig. 1(a) The neuron structure of conventional PCNNs. 
 

 
Fig. 1(b) The neuron structure of the new PCNN. 

 
the new model consists of only the primary branch and 
consequently no multiplier is needed. This simplification is 
based on the following fact: although the secondary branch 
plays a role in region-related image processing, it only has 
a minor effect on image feature generation. The mathe-
matical model of the new PCNN is given below. 
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Here, ij indicates the neuron’s position in the 2D network, 
U is the internal activity, I is the pixel intensity, Y’s are 
neurons’ output values, T is the threshold, σ is the latest 
firing time, Fire is the fire signal, H(t) is the Heaviside step 
function, td is the width of the fire signal. Feature(t), the 
sum of the fire signals of all the neurons, is the output of 
the network, i.e. a time-domain feature of the input image. 
The rest of the terms are scalars (0<Y0 ,0<T0, 0<αY<αT).  

 
3. Analog Image-Feature-Generation Circuit 

The analog image-feature-generation circuit is de-
signed based on the above PCNN model. It is composed of 
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Fig. 2 The image-feature-generation circuit composed of a 2D 
array of neuron subcircuits (NSs). Each NS corresponds to one 
pixel in the input image. 
 

 
Fig. 3 The structure of the neuron subcircuit (CT>>CY, 
VY>VC>VT, (W/L)P5>(W/L)P4, C1=C2). 

 
a 2D array of neuron subcircuits (NSs, Fig. 2). Each NS 
corresponds to one pixel in the input image. The NS emu-
lates the dynamics of the PCNN neuron, operating in the 
following way (Fig. 3). First, S1~S6 are switched to ground 
and S0 is turned on. Therefore, the potential of the floating 
gate (ФF) becomes Iij, representing the intensity of the NS’s 
corresponding pixel. Then, S0 is turned off and thus Iij is 
stored in the floating gate. Next, S1~S6 are switched to the 
input terminals, all of which are then capacitively coupled 
to the floating gate. Consequently, ФF becomes  
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which exceeds the low-to-high threshold (VM+) of the 
Schmitt Trigger (ST). Accordingly, Fire goes high and the 
switches S7, S8 turn on. Therefore, Y* and T* are rapidly 
reset to VY and VT, respectively. As a result, ФF falls below 
the high-to-low threshold (VM-) of the ST. Accordingly, 
Fire goes low and S7, S8 turn off. C1 is then discharged 
through active resistor P4 and C2 is charged through active 
resistor P5, resulting in an exponential decay of Y* and an 
exponential increase of T*. Thus ФF increases. Once ФF 
reaches VM+, Fire goes high again and the reset/decay starts 
again. Fire goes low and high during the reset/decays, gen-
erating fire signals like Eq. (4). It can be further proved that 
the operation of the NS accords with the above PCNN 
neuron model as long as VM+=VC, w=CY/CTotal, Y0=VY–VC 
and T0=(VC–VT)CT/CTotal. It is worth noting that the NS is 
operated in a voltage mode, and the NS runs autonomously 
after S1~S6 are switched to the input terminals.  

The operation of the whole feature generation circuit is 
as follows. First, pixel intensities are stored in the floating 
gates of the NSs. Next, the NSs operate simultaneously in 
the way described above. The Fire signals in the NSs are 

summed up by an analog adder, and the sum becomes the 
output of the circuit, i.e., a time-domain feature of the input 
image. The feature’s precision can easily be controlled by 
modifying the length of the running time of the circuit. 

 
4. Simulation Results 

Fig. 4 shows the SPICE simulation results of the feature 
generation circuit. The circuit produces different features 
for different input patterns (Fig. 4(a) (b) and (c)), showing 
that the circuit serves as a good tool for pattern discrimina-
tion. Meanwhile, the circuit produces highly similar fea-
tures when the pattern is rotated and translated (Fig. 4(c) 
and (d)), showing the circuit’s capability to generate rota-
tion-independent and translation-independent features. 

Furthermore, since analog circuits are more susceptible 
to fabrication imperfections and transistor characteristic 
fluctuations, the impact of this phenomenon on our circuit 
has also been investigated by simulating a more “realistic” 
circuit, where the threshold voltages of some transistors in 
the circuit (10%) have been artificially modified by 2%VDD. 
The simulation result (Fig. 5) shows that the circuit is ro-
bust against such fluctuations in transistor characteristics. 
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Fig. 4 SPICE simulation results of the circuit. Figures in the left 
are input images, figures in the right are the corresponding outputs 
of the circuit, i.e., the time-domain features of the input images. 
          

   
Fig. 5 An input image and its feature generated by the more “real-
istic” circuit that includes transistor characteristic fluctuations. 
The feature is similar with that in Fig. 4 (d). 
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