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Introduction 
In traditional p-i-n structures, N- and 

P-type layers have a larger bandgap than the 
absorbing layer sandwiched between them. 
The P-type AlGaN layer must feature a high 
aluminum content to prevent the absorption 
of light by the top layer prior to light 
reaching the absorption layer (the i-layer). 
Accordingly, the application of a 
low-conductivity p-type AlxGa1-xN top layer 
to a conventional solar-blind p-i-n 
photodiode limits the performance of such a 
photodiode, if the layer features III-nitride 
alloy with large Al content. Fortunately, this 
problem can be solved via backside 
illumination. In fact, the low-resistivity 
n-type (Si doping) AlxGa1-xN with high 
aluminum content is more easily obtained 
than the p-type AlxGa1-xN alloys [1]. In this 
study, we demonstrated an inverted 
AlGaN/GaN p-i-n photodiode(PD), which 
was designed with a buried p+-GaN layer 

combining a heavy doped n++-In0.3Ga0.7N 
layer in order to form a p+/n++ tunneling 
junction under the AlGaN/GaN n-i-p 
heterostructure, as shown in 
Fig.1(a)(sampleA). Compared to the 
conventional AlGaN-based p-i-n PDs, as 
shown in Fig. 1(b)(sample B), the inverted 
devices are capable of low-resistivity and 
high aluminum-containing n-type AlGaN 

top  
contact layer.  This arrangement allows the 
use of Mg-doped GaN rather than an AlGaN 
layer with high Al content to serve as the 
p-layer in a GaN-based p-i-n UV PDs. 
When a bias is applied to the device with 
the aforesaid inverted structure, the 
tunneling junction behaves like an “Ohmic 
contact”. Accordingly, an inverted p-i-n 
ultraviolet (UV )PD can operate like a 
conventional device. In contrast to the 
inverted PDs, the conventional PDs needed 
a thin Ni/Au bi-layer metal to be deposited 
onto the p-type AlxGa1-xN layer to form an 
Ohmic contact (p-electrode). Therefore, the 
process steps used in the inverted PDs can 
be decreased.  
 

Results 
The inverted devices exhibited a 

typical unbiased peak responsivity of 0.1 
A/W at 350 nm corresponding to a quantum 
efficiency of around 35%. The unbiased 
rejection ratio was about four orders of 
magnitude over the ultraviolet and visible 
regions of the spectrum. The typical dark 
current density of the inverted devices was 
below 5 nA/cm2 at the reverse bias below 2 
V.  As shown in Fig.2, the responsivity of 
samples B decreased markedly as the 
incident light wavelength is shorter than 350 
nm. The decrease can be attributed to the 
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significant surface absorption in the p-type 
graded AlxGa1-xN window layer and the 
p-GaN contact layer. In samples A, the 
short-wavelength(<350 nm) responsivity did 
not show a decrease and were higher than 
those of samples B. This can be attributable 
to the fact that the inverted p-i-n PDs have a 
low-resistivity and wide-bandgap window 
layer.  
 
Conclusion 

Concluding the study we should 
reinforce that the responsivity of 
samples B decreased markedly as the 
incident light wavelength is shorter than 
350 nm. The decrease can be attributed 
to the significant surface absorption in 
the p-type graded AlxGa1-xN window 
layer and the p-GaN contact layer. In the 
inverted devices(samplesA),the 
short-wavelength(λ<350nm) 
responsivity did not show a decrease and 
were higher than those of samples B. 
This can be attributable to the fact that 
the inverted PDs have a low-resistivity 
and wide-bandgap window layer. 
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Figure 1. Schematic device structure 

used in this study. 

 
 
 
 
 
 
 
 
 
Fig.2 Typical spectral responsivity for 
the samples A and samples B taken at 
different biases. 
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