Optical Properties of InGaN/GaN Light Emitting Diodes Grown by Pulsed-Trimethylindium-Flow Process

T. H. Hsueh¹, J. K. Sheu², W. C. Lai², Y. T. Wang³, H. C. Kuo³, S. C. Wang³

¹ Center for Micro/Nano Science and Technology, National Cheng Kung University

1 Ta Hsueh Road, Tainan, Taiwan, Republic of China

Phone: +886-6-2757575 E-mail: taohung@mail.mina.ncku.edu.tw

² Institute of Electro-Optical Science & Engineering, National Cheng Kung University

1 Ta Hsueh Road, Tainan, Taiwan, Republic of China

³ Department of Photonics & Institute of Electro-Optical Engineering, National Chiao Tung University

1001 Ta Hsueh Road, Hinchu, Taiwan, Republic of China

1. Introduction

InGaN/GaN multiple quantum-well (MQW) is widely used as the active layers in light-emitting diodes (LEDs) and laser diodes in the ultraviolet-blue-green range [1,2]. In general, the trimethylindium (TMIn)-flow rate is almost kept constant to grow InGaN layers during. The spatial In concentration fluctuation or the exciton localization effect tend to control the luminescence properties of InGaN/GaN MQW with higher In concentrations in thin wells, while quantum confined Stark effects (QCSE) dominate the recombination emission in the wide wells [3]. Several methods have been reported to improve the emission efficiency of InGaN/GaN MQW, such as addition of InN interfacial layers between wells and barriers. trapezoid/triangular QWs, and growth interruption between wells and barriers [4-6]. Such methods result in interface improvement and formation of QDs-like clusters for strongly localizing carriers to improve emission efficiency of MQW.

2. Experiments

All LED samples used in this work were grown on c-plane (0001) sapphire (Al₂O₃) substrates by metalorganic vapor phase epitaxy (MOVPE) with two TMIn sources. The precursors of Ga, In, N, Mg and Si were TMGa, TMIn, NH₃, Cp₂Mg and SiH₄, respectively. Prior to deposition of the GaN nucleation layer, the sapphire substrates were pre-baked at 1100°C with H₂ ambient for 10 min. The LED structure consists of a 30-nm-thick GaN nucleation layer grown at 550°C, a 4-µm-thick Si-doped GaN layer grown at 1060°C, a 8-pair In_xGa_{1-x}N/GaN MQW active layers grown at 770°C, a 50-nm-thick Mg-doped AlGaN electron blocking layer grown at 1050°C, and a 0.15-µm-thick Mg-doped GaN cladding layer grown at 1050°C. For the 8-pair In_xGa_{1-x}N/GaN MQW active region, each pair consists of a 2.5-nm-thick In_xGa_{1-x}N well layer and a 13-nm-thick GaN barrier layer. For comparison, two LED samples were grown with different initial TMIn-flow rates (f_{TMIn}) in the well layers. For sample A, the f_{TMIn} was fixed at 230 sccm for overall growth of an InGaN layer. For sample B, a pulse -TMIn-flow process was used. In this

process, the initial f_{TMIn} in each InGaN layer was 400 sccm persisting for a 10% growth time of an InGaN layer, and was then switched to 230 sccm with well shutter control. The variation of f_{TMIn} during growth for samples A and B is shown in Fig.1. The fabrication of the LED chips was described in detail elsewhere [7].

Fig. 1 Schematic diagrams of f_{TMIn} variation over time in InGaN QWs for samples A and B.

3. Results and Discussion

Figure 2 shows the 10K photoluminescence (PL) spectrum of sample A and sample B, which has the typical InGaN-related emission band with peak emission around 2.79 and 2.81 eV for samples A and B with a full linewidth at half-maximum (FWHM) of about 80 and 53 meV, respectively. It can be seen that the PL peak position of sample B blue shifts toward higher photon energy side while its FWHM of PL peak is smaller than that of sample A.

The PL emission energy of samples A and B as a function of temperature are plotted in Fig. 3. It can be seen that both curves do not follow the Varshni law and shows an "S" shape (redshift-blueshift-redshift) over a temperature range from 10 to 300K, indicating clearly the existence of localized states in both samples. In each case, the temperature-dependent emission energy could be fitted based on the band tail model suggested by Eliseev *et al.* as follow [8]

$$E(T) = E(0) - \frac{\alpha T^2}{T + \beta} - \frac{\sigma^2}{k_B T}$$
(2)

The first term describes the energy gap at zero temperature; α and β are known as Varshni's fitting parameters. The third term comes from the localization effect, in which σ indicates the degree of localization effect. K_B is Bolzmann's constant. The value of σ was estimated to be 14.7 and 17.9 meV for samples A and B, respectively; indicating the localization effect of sample B is stronger than that of sample A.

The insets in Fig. 3 show an Arrhenius plot of the normalized integrated PL intensity for the InGaN-related PL emission over the temperature range under investigation. For T > 80K, the thermal quenching can be fitted with activation energies E_A of 35.3 meV and 42.8 meV, respectively, to samples A and B. It has been suggested that the measured activation energy E_A in InGaN samples represents the localization energies of excitons, resulting from band edge fluctuations.¹⁹ It was inferred from the results mentioned above that the In fluctuations or the QD-like regions might be more abundant in sample B than in usual QWs (sample A). These results suggest that the composition fluctuations or QDs-like regions formed by using pulse-TMIn-flow process can provide the necessary confinement for an improved recombination rate.

The fabricated LED samples were tested for their light outputs as a function of injection current (L-I) as shown in Fig. 4. As can see the emission power intensity of sample B is higher than that of sample A for overall driving-current range. At lower driving current of 20 mA, the sample B have a light output power of ~ 3.6 mW 16% greater than ~ 3.1 mW for the sample A. The enhancement of light output increases with the driving current up to ~24% at 60 mA.

3. Conclusions

In conclusion, the optical properties of pulse-TMIn -flow process with an initial f_{TMIn} of 400 sccm during the well layer growth on structural and optical properties of InGaN/GaN MQWs were investigated. The results show that the pulsed-TMIn-flow process can improve the localization effects and the activation energy of InGaN/GaN MQWs. The light output of the GaN LEDs with the pulse-TMIn-flow process is increased up to 24% without any deterioration of interfacial abruptness. We attribute the increase of light output to the improvement of the localization effects and activation energies.

Acknowledgements

This work was supported in part by the National Science Council of Republic of China in Taiwan under contract No. 93-2120-M-009-006.

References

- S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor & Francis, New York, 2000).
- [2] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).

- [3] N. A. Shapiro, P. Perlin, C. Kisielowski, L. S. Mattos, J. W. Yang, and E. R. Weber, MRS Internet J. Nitride Semicond. Res. 5, 1 (2000).
- [4] Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, Appl. Phys. Lett. 84, 5422 (2004).
- [5] M. G. Cheong, C. Liu, H. W. Choi, B. K. Lee, E. -K. Suh, and H. J. Lee, J. Appl. Phys. 93, 4691 (2003).
- [6] R. J. Choi, H. W. Shim, S. M. Jeong, H. S. Yoon, E. -K. Suh, C. -H. Hong, H. J. Kee, and Y. -W. Kim, Phys. Stat. Sol. (a) 192, 430 (2002).
- [7] J. K. Sheu, C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, Y. C. Lin, J. M. Tsai, R. K. Wu, and G. C. Chi, IEEE Photonics Technology Letters 15, 18 (2003).
- [8] P. G. Elixeev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).

Fig. 2 Normalized PL emission spectra of samples A (solid line) and B (solid circle) at 10K.

Fig. 3 The temperature dependence of PL peaks energies and normalized PL intensity (inserts) for samples A and B.

Fig. 4 L-I characteristics for the samples A and B.