Fabrication of HfO$_x$N$_y$ dielectrics on Ge from HfN$_x$ deposition

Tatsuro Maeda$^1$, Yukinori Morita$^1$ and Shinichi Takagi$^{1,2}$

$^1$ MIRAI, Advanced Semiconductor Research Center - National Institute of Advanced Industrial Science and Technology (ASRC-AIST), AIST Tsukuba Central 4, Tsukuba, Ibaraki 305-8562, Japan
Phone: +81-29-861-5122  E-mail: t-maeda@aist.go.jp
$^2$ The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

1. Introduction

The establishment of high-k gate insulator formation technologies on Ge substrates with high quality MIS interfaces is one of the most challenging and critical issues for realizing Ge channel MOSFETs. Since high-k metal-oxide films are often deposited in an oxidizer-rich environment, oxidation of Ge surfaces during high-k film deposition is almost unavoidable. Here, the growth of thermally unstable GeO$_x$ layers causes Ge diffusion into high-k films, which might deteriorate electrical properties in high-k/Ge interfaces. Instead of direct oxide deposition, HfN$_x$ deposition in non-oxidizer environment has not been reported yet. Thus, in this study, we investigate the characteristics of as-deposited HfN$_x$ films directly deposited on Ge and the dielectric properties of HfO$_x$N$_y$ formed by subsequent oxidation processes.

2. Experimental

P-type Ge(001) substrates were cleaned in diluted HF. HfN$_x$ films were deposited by UHV reactive sputtering system with a Hf metal target (O<0.02%) to avoid the oxidation of Ge substrates and HfN$_x$ films. During the deposition, the chamber pressure was 1 mTorr in pure Ar+N$_2$ gases (O$_2$<0.1ppm) and the sputtering power was 100 W. The following post-deposition annealing (PDA) was carried out to convert HfN$_x$ into HfO$_x$N$_y$ at 400°C in N$_2$ rather than in O$_2$. Here, low partial pressure O$_2$ unintentionally contained in N$_2$ can lead to oxidation of HfN$_x$ films [1]. Physical and chemical analyses of HfN$_x$ films were performed by using the high-resolution transmission electron microscope (HR-TEM), the X-ray photoelectron spectroscopy (XPS), the grazing incident X-ray reflectively (GIXR), and the high-resolution Rutherford backscattering spectroscopy (HR-RBS).

3. Results and discussion

Fig. 2 shows cross-sectional HR-TEM images of as-deposited HfN$_x$ films on Ge substrates with the deposition time of (a) 3 min and (b) 1 min. Total thickness is 12 nm (a) and 5 nm (b), respectively. It is observed that both films consist of three layers; surface, inner, and interfacial layers. While the thickness of the inner layers increases with increasing the deposition time, the thickness of surface and the interfacial layers are the same. Therefore, these layers are thought to grow before and after the HfN$_x$ deposition as explained below.

Figure 3 shows the XPS spectra of Hf$4f$, O$1s$, and N$1s$ of as-deposited films before and after Ar etching. Before Ar etching, broad triple Hf$4f$ peaks, which can be assigned to Hf-O and Hf-N bonds, are observed. After 10s Ar etching, the Hf$4f$ peak shows only doublet while the O$1s$ signal becomes lower than the detection limit. On the other hand, the N$1s$ peak at 396.5 eV can be attributed to Hf-N bonds. These results indicate that the surfaces of as-deposited HfN$_x$ films are oxidized easily once they are exposed to air, and the oxidized regions are presented as the surface layers in TEM images.

In order to evaluate the compositional profile of inner and interfacial layers, HR-RBS analyses are performed by using the thickness and the density of each layer, determined by GIXR measurements. The depth profiles of the film compositions in as-deposited HfN$_x$ films on Ge and those after PDA are shown in Fig. 4. Note that the Hf target includes Zr impurity (<3%). It is found that main compositions of the interfacial layer are Ge and N, meaning that the Ge nitrides successfully passivate the Ge surfaces under the present fabrication method. Despite the attempt to produce non-oxidizer environment, however, O atoms are also observed to be distributed throughout inner and interfacial layers with the atomic composition of 5-10% except native-oxidized surface layer. The O incorporations in these layers are attributable to residual oxidants during the sputtering because Hf and Ge are easier to be oxidized than nitrided. Thus, the control of the residual oxidants during the deposition is the key to lead to further reduction in the oxide formation in the interfacial layers. After PDA, the substitution of N for O and the reduction of C lead to the formation of denser and oxygen-rich HfO$_x$N$_y$ layers in the surface side while nitrogen-rich HfO$_x$N$_y$ layers are still remained in inner side. On the other hand, the film compositions and the thickness of the interfacial layers (Fig. 2 (c)) do not change substantially, meaning the stability of nitride passivation layers for this thermal process.

Figure 5 shows (a) CV at 1MHz and (b) JV characteristics in a 5nm-thick sample before and after PDA. The as-deposited film itself exhibits a dielectric property but is accompanied with a high leakage current and a positive flat-band voltage shift due to formation of negative charges. It is found that PDA leads to the improvement of C-V and I-V characteristics due to the enrichment of oxygen in HfO$_x$N$_y$ as observed in HR-RBS. The thin CET of 1.53 nm, obtained from the value of the maximum capacitance den-
sity of 2.26 μF/cm², is attributed to the high nitrogen composition in the HfOₓNᵧ films. In order to improve the leakage current and interface properties of HfOₓNᵧ on Ge, further optimization of the thickness of HfNₓ films and the PDA condition are needed.

3. Conclusions

We investigate HfNₓ depositions on Ge in active nitrogen plasma to simultaneously passivate Ge surfaces by nitridation and inhibit the oxidation. As-deposited HfNₓ films are found to be composed of i) native-oxidized surface layers, ii) HfNₓ and iii) GeNₓ interfacial passivation layers with oxygen atomic composition of 5-10%. The following PDA densifies and oxidizes the as-deposited films from the surface to form HfOₓNᵧ, which improves the dielectric properties.

Acknowledgements

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO).

References