Production-Worthy HfSiON Gate Dielectric Fabrication Enabling EOT Scalability Down to 0.86 nm and Excellent Reliability by Polyatomic Layer Chemical Vapor Deposition Technique

Dai Ishikawa¹, Satoshi Kamiyama¹, Atsushi Sano², Sadayoshi Horii², Takayuki Aoyama¹, and Yasuo Nara¹ ¹Research Dept. 1, Semiconductor Leading Edge Technologies (Selete), Inc., 16-1 Onogawa, Tsukuba-city, Ibaraki, 305-8569, Japan ²Research Dept. 2, Semiconductor Equipment System Lab., Hitachi Kokusai Electric Inc., 2-1 Yasuuchi, Toyama-city, Toyama, 939-2393, Japan

E-mail: <u>ishikawa.dai@selete.co.jp</u> Tel: +81-29-849-1261

1. Introduction

Among the high-*k* materials under investigation, Hf-silicates have emerged as the most promising candidates [1]. For fabrication of Hf-silicate films, Atomic Layer Deposition (ALD) technique [2] has been applied so far, but it has been difficult to achieve acceptable throughput for production. To fabricate high-quality film with sufficient throughput, we have developed the Polyatomic Layer Chemical Vapor Deposition (PLCVD) process in which ultra-thin film deposition and post-deposition O_3 treatment steps are repeated. Key concepts are film deposition in CVD mode to increase the growth rate and post-deposition treatment to the ultra-thin films to improve film quality [3]. In this paper, we report on excellent productivity of the PLCVD process and demonstration of EOT scalability (0.86 nm), high mobility (80% of SiO₂) and high BTI reliability.

2. Experiment

The PLCVD Hf-silicate films were formed using a single-wafer reactor designed for 300-mm wafer processing tetrakis (1-methoxy-2-methyl-2-propoxy)-hafnium using $(Hf[OC-(CH_3)_2CH_2OCH_3]_4)$ and tetrakis(1-methoxy-2methyl-2-propoxy)-silicon (Si[OC(CH₃)₂CH₂OCH₃]₄) as the Hf and Si precursors, respectively. The schematic of PLCVD reaction is shown in Figure 1. First, the Hf and Si precursors were introduced into the reactor at around 400°C to deposit several layers of Hf-silicate film by self decomposition. Then after purging with N₂, diluted O₃ was introduced into the reactor for 2-10 s to eliminate impurities. These process steps were repeated until the target thickness was formed. The process cycle time for a typical condition was around 1 min. We investigated two different process sequences: Hf and Si precursors were either introduced in the same step (co-injection, Fig.2 (a)) or in separate steps (laminate, Fig.2 (b)). For the electrical characterization of the films, MISFET samples were fabricated by forming Hf-silicate films of around 2-nm in thickness on 0.6-nm-thick SiON interfacial layers, followed by plasma nitridation and post-nitridation annealing at a temperature of 1000°C. Poly-silicon or TaSiN were used as the gate electrodes.

3. Results and Discussion

The average thicknesses and thickness uniformities of Hf-silicate films are shown in Figure 3 as a function of the number of process cycles. The film thicknesses increase at a rate of 0.5 nm/cycle, which is higher than the typical growth rate for the ALD process, 0.1nm/cycle [2]. Therefore, five times higher throughput than that for the ALD process can be achieved by the PLCVD process. Compared to the co-injection sequence, the laminate sequence is inferior in throughput by around 30%, due to the extra purge step. Good thickness uniformity of around 3% over a 300-mm wafer is also noted. Figure 4 shows the controllability of the Hf concentration in the HfSiO films. By changing the flow ratio (co-injection) or the injection time (laminate) of the Hf and Si sources, the Hf concentration can be varied from 30 to 100%. Figure 5 shows the depth profile of the carbon concentration in a 5-nm thick HfSiO film as measured by SIMS. The amount of the C contaminant can be reduced by extending the O₃ treatment time. A light O₃ treatment for just 2s/cyc reduces the C concentration down to $2x10^{20}$ atoms/cm³ for both co-injection and laminate films.

We then investigated the electrical properties of HfSiON films with a Hf concentration of 55%. Figure 6 shows the I-V characteristics of N- and P-FETs with HfSiON gate dielectrics that were formed by the co-injection and laminate processes. The gate leakage current (J_G) of the N-FETs and the threshold voltage (\bar{V}_{TH}) of the P-FETs are shown in Figures 7 and 8 as a function of the Equivalent Oxide Thickness (EOT). Figure 7 shows that the EOT increases as the O_3 treatment time is extended due to the growth of an interfacial layer. It is also noticeable that the J_G values of the co-injection films are smaller than those of the laminate films, when they are compared at the same EOT. The higher J_G of the laminate film is probably due to a reaction of the Hf in the film with the poly-silicon electrode [4], as implied by the higher V_{TH} of the P-FET with the laminate film (Figure 8). This may be due to the existence of thin HfO₂ layers in the laminate film, as depicted in Figure 9. We assume that some interaction occurs between the Hf in the topmost HfO₂ layer and the poly-Si electrode across the thin SiO₂ layer. The co-injection film also shows superior immunity against PBT stress, as shown in Figure 10. It can be seen that the slope of ΔV_{TH} is constant, regardless of the film structure, and that the offset depends on it. This means that there are more pre-existing traps in the laminate films, which may be also due to the HfO_2 layer in the film. PBTI and NBTI lifetime extrapolations are shown in Figures 11 and 12, respectively (ΔV_{TH} =30mV). The co-injection film shows longer lifetimes for both PBTI and NBTI, which exceeds 10 years at V_G=±1.0V. Prolonged O₃ treatment shows little impact on improving the lifetime, although the C concentration is reduced as shown in Figure 5. These results indicate that the slightest O_3 treatment (2s/cyc) is enough to maximize the film properties. Electron and hole mobilities are shown in Figure 13. Both co-injection and laminate films exhibit excellent values, 80% of universal at $E_{EFF}=0.8MV/cm$. Finally, the EOT vs J_G relationship for N-FETs with thin HfSiON gate dielectrics formed by the co-injection process with 2s/cyc O₃ treatment is shown in Figure 14. A TaSiN electrode was used for these samples alone. EOT scalability down to 0.86 nm with keeping J_G lower than 36-nm-node targets [5] is confirmed. Performance of the PLCVD process and properties of the HfSiON films are summarized in Table 1 with those of the ALD process as comparison.

4. Conclusion

We have confirmed superior productivity of the PLCVD process compared to the ALD process, together with sufficient uniformity and controllability, as shown in Table 1. The co-injection process was superior to the laminate process in throughput, J_G and reliability. Sufficient mobilities, BTI lifetimes over 10 years and EOT scalability down to 0.86 nm with keeping sufficient low J_G were confirmed by the optimized condition. These results confirm that this method provides excellent manufacturability for 36-nm-node and further LOP and LSTP applications.

References

- [1] S. Inumiya et al, SSDM (2005) p.10.
- [2] S. Kamiyama et al, Electrochem. and Solid-State Lett. 8 (2005) p.215.
- [3] T. Nabatame et al, Symp. VLSI Tech. (2003) p.25.
- [4] S. Kamiyama et al, APL 86 (2005) p. 222904.

^[5] International Technology Roadmap for Semiconductor 2006.

Fig. 4 Hf concentration in the PLCVD Hf-silicate as a function of Hf and Si flow ratio (co-injection) or injection time ratio (laminate).

Fig. 7 EOT versus J_G for the HfSiON films formed by co-injection and laminate processes.

Fig. 10 V_{TH} shift of the co-injection and the laminate films as a function of PBT stress.

Fig. 13 Electron and hole mobilities of co-injection and laminate films.

Fig. 2 Supply sequences for the co-injection process (a) and the laminate process (b).

Fig. 5 Depth profiles of carbon concentration in 5-nm thick HfSiO films prepared by the co-injection (left) and laminate (right) processes, as measured by SIMS.

Fig. 11 PBTI lifetime extrapolation of co-injection and laminate films.

Fig. 14 EOT versus J_G at 0.7 and 1 V for thin HfSiON films formed by an optimized process. Physical thicknesses of HfSiON films are indicated.

Fig. 3 Average thickness and thickness uniformity as a function of the number of process cycles.

 $V_G(V)$ Fig. 6 I-V characteristic of N and P-FET with HfSiON gate dielectrics prepared by co-injection and laminate processes.

Fig. 9 Assumed film structure of HfSiO film formed by the laminate process.

rig. 12 NB11 lifetime extrapolation of co-injection and laminate films.

	PLCVD (co-injection)	PLCVD (laminate)	ALD [2]
Growth rate (nm/cycle)	0.5	0.5	0.1
Number of process steps per cycle	4	6	4
Uniformity (%)	2.6	1.7	<3
Hf composition	30-100%	30-100%	0-100%
C conc. (cm ⁻³)	2x10 ²⁰	2x10 ²⁰	<2x10 ²⁰
Mobility (% of universal)	80	80	80
J _G @1.1nm, 1V (A/cm ²)	0.23	1.7	0.17
PBTI lifetime (years)	6x10 ⁴	3x10 ³	-
NBTI lifetime (years)	48	4	-

Table 1. Summary of performance of the PLCVD and ALD processes and physical/electrical properties of HfSiON films by these processes.