# **Effectiveness of Aluminum Incorporation in Nickel Silicide and Nickel Germanide Metal Gates for Work Function Reduction**

Andy E.-J. Lim, Rinus T.P. Lee, Alvin T.Y. Koh, Ganesh S. Samudra, Dim-Lee Kwong<sup>\*</sup>, and Yee-Chia Yeo

Silicon Nano Device Lab., Dept. of Electrical & Computer Engineering, National University of Singapore, Singapore 117576.

\*Institute of Microelectronics, 11 Science Park Road, Singapore 117685.

Phone: +65 6516-2298, Fax: +65 6779-1103, E-mail: yeo@ieee.org

# 1. Introduction

Nickel (Ni) fully-silicided (FUSI) gate is a promising metal gate option, and could potentially be adopted for future CMOS technology nodes. The modulation of NiSi gate work function  $\Phi_m$ (~4.6 eV) from Si midgap is highly desired for achieving low transistor threshold voltage. Ni-alloys have been used during silicidation to modulate the NiSi gate  $\Phi_m$ , and ternary Ni<sub>1-x</sub>Pt<sub>x</sub>Si has been reported to successfully obtain PMOS  $\Phi_m$  tunability [1]– [3]. On the other hand, Ni fully-germanided (FUGE) gate has also attracted interest due to its p-type  $\Phi_m$  corresponding to Si valenceband edge [4]-[5]. In view of this, a suitable NMOS solution would realize dual gate integration employing either Ni-FUSI, or Ni-FUGE gates. In this paper, we investigate the effectiveness of Al incorporation in NiSi and NiGe gates [denoted by Ni(Al)Si and Ni(Al)Ge, respectively] for NMOS  $\Phi_m$  modulation. Due to the low  $\Phi_m$  of Al (4.2 – 4.3 eV), a reduction in  $\Phi_m$  of ~0.2 eV for Ni(Al)Si, and ~0.6 eV for Ni(Al)Ge was achieved. This was attributed largely to Al segregation at the gate/dielectric interface and not the change in intrinsic gate  $\Phi_m$ .

# 2. Experiment

First,  $\sim 3 - 7$  nm of thermal SiO<sub>2</sub> was formed by a SiO<sub>2</sub> etchback process (for  $\Phi_m$  extraction). In addition, a  $\sim 3$  nm thick SiO<sub>2</sub> was separately grown for some samples (for equivalent oxide thickness  $T_{ox}$  extraction). Next,  $\sim 50$  nm of Si (chemical vapour deposited), or Ge (sputtered) was deposited and patterned. After a HF-dip to remove native oxide,  $\sim 40$  nm of Ni, or Ni<sub>1-x</sub>Al<sub>x</sub> (x = 0.07, 0.22 or 0.42) was deposited by sputtering and co-sputtering, respectively. Rapid thermal annealing (RTA) at 450 or 550°C for 60 s in N<sub>2</sub> was eched by dilute HNO<sub>3</sub> (5%) to complete the gate stacks.

# **3. Results and Discussions**

Fig. 1 shows the C-V curves of Ni(Al)Si gate silicided at 450 and 550°C. We see a more negative flatband voltage  $V_{\rm FB}$  shift when Ni(Al)Si gate was silicided at the higher temperature. Secondary ion-mass spectroscopy (SIMS) was employed to determine the Al profile in the Ni(Al)Si gate stacks (Fig. 2). Due to the high sensitivity of Al in SIMS positive ion mode, both Al ion and Al<sub>2</sub> ion cluster profiles were monitored to confirm the difference in Al intensity, if any, between the samples. Higher Al and  $Al_2$  intensity for a 550°C RTA showed that a higher temperature favoured Al diffusion towards the Ni(Al)Si/SiO<sub>2</sub> interface during silicidation. Therefore, a 550°C anneal was employed for subsequent FUSI and FUGE gates. The Al SIMS profile also indicated that the Ni(Al)Si gate consisted of a Al-rich top layer. Fig. 3 shows the transmission electron microscopy (TEM) image of a bilayer FUSI Ni(Al)Si gate (silicided with Ni<sub>0.78</sub>Al<sub>0.22</sub>). Electron dispersive X-ray spectroscopy (EDX) verified that Al was not uniformly distributed in the Ni(Al)Si gate: the top  $Ni_xAl_ySi_z$  layer had a higher Al atomic concentration. The Ni(Al)Ge gate also had the same bilayer structure and a similar Al distribution (not shown).

The Al content in  $Ni_{1-x}Al_x$  was varied to investigate its effect on gate  $\Phi_m$ . Fig. 4 (a) shows that silicidation using a  $Ni_{0.93}Al_{0.07}$ alloy was sufficient to modulate the  $V_{FB}$  by ~0.16 V (from NiSi). There was negligible  $V_{FB}$  change as the Al ratio increased. Fig. 4(b) indicates that the  $V_{\rm FB}$  of Ni(Al)Ge could also be modulated by Al incorporation. The results from Ni(Al)Ge gate germanided with Ni<sub>0.58</sub>Al<sub>0.42</sub> was excluded, as the gate was not FUGE. The smaller  $T_{ox}$  for both Ni(Al)Si and Ni(Al)Ge gate stacks suggested that a reaction between Al and SiO<sub>2</sub> dielectric occurred during RTA (Fig. 5).  $V_{\rm FB}$  vs  $T_{ox}$  plots in Fig. 6 (a) and (b) were used for effective gate  $\Phi_m$  extraction by eliminating the contribution of fixed oxide charges  $Q_{\rm f}$ . Lower Ni(Al)Si and Ni(Al)Ge gate  $\Phi_m$  are expected from the  $V_{\rm FB}$  values in the plots.

High resolution TEM images in Fig. 7 (a) and (b) show good dielectric integrity for both Ni(Al)Si and Ni(Al)Ge gate stacks (using Ni<sub>0.78</sub>Al<sub>0.22</sub>). The segregation of Al in Ni(Al)Ge could be clearly observed [Fig. 7 (b)]. Therefore, gate  $\Phi_m$  modulation was attributed to segregation of metallic Al at the gate/dielectric interface [3]. X-ray diffraction (XRD) on corresponding blanket films confirmed that no ternary silicide or germanide was formed (Fig. 8). This further supports the fact that the  $\Phi_m$  reduction was largely due to Al segregation, and not a change in intrinsic gate  $\Phi_m$ (i.e. ternary silicide or germanide formation). However, this caused a decrease in  $T_{ox}$  for both Ni(Al)Si and Ni(Al)Ge gates, as highlighted in Fig. 5. It was reported that implanted Al atoms segregated towards the SiO<sub>2</sub> interface during Ni-silicidation to form a stable layer of Al<sub>2</sub>O<sub>3</sub> (~0.5 nm) [6]. Therefore, it is believed that Al scavenges O from SiO2 during silicidation/germanidation to form a thin Al<sub>2</sub>O<sub>3</sub> interfacial layer. Hence, the compensation of negative  $Q_{\rm f}$  from Al<sub>2</sub>O<sub>3</sub> possibly caused the reduction in positive  $Q_{\rm f}$  for Ni(Al)Ge and Ni(Al)Ge gate stacks (Fig. 9). Fig. 10 summarizes the effective gate  $\Phi_m$  values obtained through Al incorporation in NiSi and NiGe. The saturation in Ni(Al)Si  $\Phi_m$ tunability at ~4.4 eV could be due to a combination of Fermi-level pinning by interfacial Al<sub>2</sub>O<sub>3</sub> [7], as well as the non-uniform distribution of Al in the gates. The small ~0.1 eV shift in Ni(Al)Ge  $\Phi_m$  (germanided with Ni<sub>0.93</sub>Al<sub>0.07</sub>) was attributed to the high NiGe  $\Phi_m$  (~5.0 eV), coupled with less Al segregation in sputtered Ge during germanidation. However, with increased Al ratio in Ni-Al alloy, a significant ~0.6 eV shift in Ni(Al)Ge  $\Phi_m$  was obtained.

# 4. Conclusions

Work function  $\Phi_m$  reduction through Al incorporation in NiSi and NiGe was achieved. A higher annealing temperature enhances Al segregation toward the gate/dielectric interface, which directly modulates the gate  $\Phi_m$ . The non-uniform distribution of Al in the gate, and formation of interfacial Al<sub>2</sub>O<sub>3</sub> are mainly responsible for saturation in both Ni(Al)Si and Ni(Al)Ge gate  $\Phi_m$  at ~4.4 eV. This current  $\Phi_m$  value is suitable for transistors with advanced structures like multiple-gate field-effect transistors.

### Acknowledgements

Research grant from the Nanoelectronics Research Program of the Agency of Science, Research & Technology (A\*STAR) is acknowledged. A. E.-J. Lim acknowledges an A\*STAR Graduate Scholarship Award.

### References

- [1] C. Cabral, et al., Symp. VLSI Tech., pp. 184, 2004.
- [2] R. T. P. Lee et al., Electrochem. Solid-State Lett., 8(7), pp. G156, 2005.
- [3] Y. H. Kim et al., IEDM Tech. Dig., pp. 1069, 2005.
- [4] C. H. Huang et al., IEDM Tech. Dig., pp. 319, 2003.
- [5] Y. Tsuchiya et al., SSDM, pp. 844, 2005.
- [6] R. P. Rezzi et al., Appl. Phys. Lett., 87, pp. 162902, 2005.
- [7] Y. C. Yeo et al., J. Appl. Phys., 92, pp. 7266, 2002.



Fig. 1: The C-V curves show a more negative  $V_{\rm FB}$  shift for the Ni(Al)Si gate silicided at 550°C than 450°C.



Ni(Al)Si SiO, Si-sub Relative Intensity (a.u.) 10 Al 10 Silicidation 10 Temperature Solid symbols: 450°C Open symbols: 550°C 10<sup>°</sup> 200 400 0 600 Sputtering Time (s)

Fig. 2: SIMS profile indicates more Al present at the Ni(Al)Si/SiO<sub>2</sub> interface after a  $550^{\circ}$ C silicidation. A higher Al concentration was also observed at the top of the gate.



**Fig. 4**: *C*-*V* curves for (a) Ni(Al)Si and Ni(Al)Ge gates formed using different Ni<sub>1-x</sub>Al<sub>x</sub> alloys. A saturation in Ni(Al)Si  $V_{FB}$  was observed with varying Al ratio. Ni(Al)Ge gate was also able to achieve approximately the same  $V_{FB}$  through Al incorporation (using Ni<sub>0.78</sub>Al<sub>0.22</sub> alloy).



**Fig. 6**:  $V_{FB}$  vs  $T_{ox}$  plots for  $\Phi_m$  extraction of (a) Ni-FUSI and (b) Ni-FUGE gates in this work. Lower Ni(Al)Si and Ni(Al)Ge gate  $\Phi_m$  are expected from the  $V_{FB}$  values in the plots.



**Fig. 8**: NiSi and NiGe XRD peaks from Ni(Al)Si and Ni(Al)Ge films indicate the absence of ternary silicide or germanide formation.



Fig. 9: The decrease in  $Q_f$  when Al was incorporated in NiSi and NiGe gates was due to the growth of an interfacial Al<sub>2</sub>O<sub>3</sub> layer.



**Fig. 3**: TEM image of a bilayer FUSI Ni(Al)Si gate stack. EDX verified that the Al profile was not uniformly distributed in the Ni(Al)Si gate.



**Fig. 5**: A decrease in  $T_{ax}$  was observed for both Ni(Al)Si and Ni(Al)Ge gates from NiSi and NiGe gates, respectively, suggesting that Al had reacted with the SiO<sub>2</sub> dielectric.



**Fig. 7**: High resolution TEM images of (a) Ni(Al)Si and (b) Ni(Al)Ge gates showing good dielectric integrity. Al segregation after germanidation could be clearly detected from (b).



Fig. 10: Al incorporation was able to reduce the  $\Phi_m$  of NiSi and NiGe by ~0.2 eV and ~0.6 eV, respectively.