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1. Introduction 

The nonequilibrium Green’s function (NEGF) 
formalism provides a suitable framework for quantum 
simulations in nanoscale devices. However, commonly 
used finite difference grid representation schemes involve 
large number of the mesh points which makes 
computations very challenging for 3D nanostructures with 
complex geometry [1]. Realistic random charge distribution 
in MOS devices also presents crucial obstacle to reliable 
application of the grid methods. In this work we formulate 
a conceptually new method which gives a way around these 
problems. The method is applied to quantum ballistic 
transport in 3D Double Gate and Gate-all-Around 
MOSFETs [2]. 
 
2. Theory 

Quantum simulations in nanoscale device require 
accurate and efficient calculation of the Green’s function. 
In the effective mass approximation it satisfies the equation 
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Eq.(1) must be solved self consistently along with the 
Poisson equation for the electrostatic potential ϕ(R) which 
includes the response to the carriers charge -ene(R). Instead 
of using the real space grid we construct all physical 
quantities (G(R,R’,E) , ne(R), ϕ(R)) in the form of basis 
expansion.  

We show that in arbitrary open area of the device the 
effect of its boundaries can be analytically extracted from 
Eq.(1) so that the remaining part is equivalent to a closed 
system where the basis functions Φn(R) can be defined. As 
a result, we can derive the basis representation for the 
Green’s function in the open area 
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where En are the corresponding eigen energies, Ri are the 
quadrature points at the area boundary and the numerical 
parameters Ii are related with the electric current at these 
points. In all physically interesting cases these parameters 
can be found analytically. In particular, by imposing the 
outgoing boundary conditions we construct the retarded 
Green’s function, calculate the corresponding self energies 
and the carrier density ne(R). Similar solution is derived for 
the electrostatic potential ϕ(R) [3].  

 
3. Numerical Method and Simulation Results 
Eq.(2) and similar representations for ne(R) and ϕ(R) 
provide building blocks of effective quantum simulator. 
The basis in arbitrary open area is found in terms of DVR 
(Discrete Variable Representation) functions [4] consistent 
with the area geometry. This significantly reduces the 
volume of computations. Figure 1 shows typical behaviour 
of numerical error for 1D version of Eq.(1). The grid in the 
DVR representation is just the corresponding Gaussian 
quadrature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1  Accuracy of one-dimensional DVR basis 
representation in comparison with the grid method. 

 
    The whole computational domain can be split into a 
set of small separate open areas where the basis is easy to 
compute. Adjacent areas are coupled by the continuity 
conditions for the Green’s function and the electric current 
at the corresponding boundaries. The numerical coefficients 
Ii in Eq.(2) become boundary parameters which couple the 
adjacent areas. In the case of the Poisson equation, the 
normal components of the displacement filed at the 
boundary Dn(Ri) act in similar way. The number of the 
quadrature points Ri at the internal boundaries between the 
areas becomes the size of the problem to be solved 
numerically.  
     We formulate the coarse grain method which is based 
on idea of successive propagation through the device. In 
scope of this method the computational domain is allowed 
to grow by adding small open areas one by one. In the 
course of propagation the current Ii and displacement field 
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Dn(Ri) at the internal boundaries can be computed 
successively and the computational time scales linearly 
with the device volume.  
 
As a test, we calculate ballistic quantum transport in 3D 
Double Gate and Gate-All-Around MOSFETs shown on 
Figures 2a and 3a. Their I-V characteristics are compared 
on Figure 4. In the case of Gate-All-Around geometry 
better control of the potential in the gate area (see Figs. 2b 
and 3b) improves the device performance. In particular, we 
have obtained the subthreshold swing close to the ideal 
value 60 mV/d.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 (a)3D Double Gate MOSFET; (b) The 
potential profile along the current direction for 
VSD=0.1 V and VG=0.3-0.6 V. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 (a)3D Gate-All-Around MOSFET; (b) The 
potential profile along the current direction for 
VSD=0.1 V and VG=0.3-0.6 V. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Drain current in 3D Double Gate and 
Gate-all-Around MOSFETs as a function of the gate 
voltage. The applied bias is 0.1 V. 

 
The present method greatly facilitates quantum simulations.  
Thus, one loop of iteration includes solving the Poisson 
equation followed by calculation of the Green’s function, 
corresponding self-energies and carrier density. Computing 
the current on Fig.4 with 4 significant digits of accuracy 
takes only 4-5 sec/one loop on a workstation (Opteron 254 
2.8GHz).  

 
Conclusion 
We have derived continuous basis representation of the 
Green’s function in open system and formulated the 
numerical method which: 1) greatly reduces the  
computational size compared to the grid method, 2) splits 
the device into a set of simple elements which are treated 
independently, 3) propagate physical solutions through the 
device in any desired way. As a result, the major portion of 
the computations does not depend on the device size. This 
also enables one to treat realistic random charge 
distribution exactly by using appropriate shape of the 
elements and their internal coordinate representation. With 
the present method, 3D Quantum NEGF simulations are 
easily carried out on personal computer. 
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