In-Depth Study of Two-Dimensional Layout Dependences in Multiple-Stressor CMOS for 45 nm Technology Node High-Performance Applications

Fujitsu Laboratories Ltd., *Fujitsu Limited, 50 Fuchigami, Akiruno, Tokyo 197-0833, Japan
Phone: +81-42-532-1250, Fax: +81-42-532-2513, E-mail: miyasita@labs.fujitsu.com

Abstract

This paper describes the two-dimensional (2-D) layout dependences caused by dual stress liner (DSL) integration for 45 nm node high-performance (HP) devices with multiple-stressor technology (MST). It is demonstrated that both the lateral and transverse boundary positions significantly affect device characteristics such as threshold voltage and drive current, and these effects become much more pronounced in the devices with higher channel strain by MST. Based on these results, we developed new SPICE simulation procedure and made it possible to simulate various layout circuits accurately with taking into account 2-D DSL layout dependences.

Introduction

In order to break I_{on}-I_{off} trade-offs [1], in which drive current is rapidly decreased while subthreshold leakage current at the narrow end of 40 nm regime, one of the most powerful methods is to use multiple-stressor technology (MST) [2-6], and it has thus been widely introduced not only into high-performance (HP) devices, but also into those of low operating power (LOP) and mobile products [7]. Indeed, dramatic carrier mobility enhancement and the resultant drive current improvement have been realized with MST; however, the issues of strain induced layout dependences have newly arisen [7], especially for small geometry devices. In this paper, we explore the impact of layout dependences on the characteristic variations originated from the dual stress liner (DSL) scheme [8] in MST for the 45 nm technology node HP applications. We also discuss our strategy of MST and SPICE modeling by taking into account these layout dependences.

Multiple-Stressor Technology

Table I shows the summary of our MST used for the 45 nm technology node. Devices with standard <110> channels on (100) substrates were fabricated. For NFETs, poly gate stressor (PGS) and a tensile contact etching stop layer (tCESL) were adopted, whereas for PFETs, SiGe wires were added. SiGe and compressive CESL procedure were introduced as MST for both devices’ performance enhancement. These technologies were integrated with the sequence as shown in Table I. The multiple stressors can be easily introduced into core logic circuit; however, they should be carefully selected for the SRAM to achieve high yield by minimizing critical gate length on the characteristic variations. Our strategy is to use SiGe, PGS, and DSL are not used and only the tCESL is introduced to both N and PFETs in SRAM to obtain a high read current by enhancing NFETs performance. Although DSL is indispensable technology, one of the concerns in DSL integration is compression of the ESL. In Figs.2 and 3, we show the lateral contact resistance and the related impressions on the boundary. Even for the worst case where no CESL exists (corresponds to (c)), it is observed that the contact resistance is sufficiently low and well distributed compared with that of other relative contact positions. However, when the contact size is further scaled, the process difficulty increases and the open failure is observed as shown in Fig.2. We, therefore, prohibit laying out the contact at the DSL boundary in our design rule, although this brings about the requirement of a slightly relaxed layout.

Results and Discussion

Fig.3 shows the monitor layout for investigating the effect of the DSL boundary on the transistor characteristics used in this paper. Both the lateral and transverse DSL boundary positions are expressed with the parameters of SL (gate edge to boundary) and SLW (active to boundary), respectively. SD diffusion lengths (L_{SD}) are fixed to 0.5 μm, therefore, the distance between active edge and boundary in the lateral direction is expressed by (SLL - 0.5) μm. In addition to the monitor with normal polarity (e.g., tCESL over NFET), that of inverted polarity (over NFET) was also investigated for data and understanding of strain dependences. In Fig.3, plan-view SEM photographs of these monitors just after the DSL module are also shown, and it is clear that they were successfully fabricated as we expected.

Figs.4 and 5 show the saturation V_I dependence on both SLL and SLW, respectively, for narrow and wide channel devices. Here, V_I is plotted for relatively long devices ($L_g = 80$ nm) in order to eliminate the short-channel effect (SCE) induced V_I. As for the lateral boundary effect, it is shown that V_I becomes deeper with the decrease of SLL for both N and PFETs. This is due to the decrease in strain induced subband splitting with the decrease of lateral channel strain as a result of closer lateral DSL boundary to the channel. In addition, V_I shift is almost independent of channel width. For the transverse direction as shown in Fig.5, V_I shifts monotonically for NFETs; however, for PFETs, it once becomes shallow with the decrease of SLW then becomes deep below the 0.15 μm regime, and the V_I shift is much larger for narrow devices. This behavior indicates that transverse boundary effects are more pronounced in which the lateral and transverse channel strains are simultaneously changed. Although strain induced V_I shift is relatively large, its impact on V_I fluctuations is almost negligible as shown in Fig.6.

Next, we investigated the impact of the DSL boundary on the drive current. Fig.7 shows the relative NFET I_{on} as a function of SLL. It can be clearly seen that the I_{on} is decreased with decreasing SLL, and the worst I_{on} degradation by 12% was observed at SLL = 0.2 μm, where the boundary is located within the active region. Of course this I_{on} degradation is partly due to the V_I shift as shown previously, but it is also due to the increase of mobility for both N and PFETs. In Figs.9 and 10, the major difference, when comparing with the no-CESL case is that I_{on} dependence on SLL is similar to that of NFET, but the relative change of I_{on} is much larger as shown in Fig.8. This can be attributed to the largest Piezoresistance coefficients (n) of PFET [9] and larger intrinsic film stress in cCESL. Note that the device without eSiGe, that was without elevated-SD is more sensitive to SLL. In narrow device, the hand, the transverse boundary effects on the drive current are shown in Figs.9 and 10. The major difference, when comparing with the lateral boundary effects, is larger channel width dependence, and it can be seen that the narrower the channel width, the more sensitive to SLL. In addition, PFET I_{on} dependence on SLW is almost negligible as shown in Fig.6. The transverse compressive strain is also decreased with further decreasing SLW, consequently, PFET I_{on} dependence shown in Fig.10 was observed. We also confirmed this behavior by 3-D process simulation (not shown). Figs.11 and 12 plot I_{on} dependence on SLL and SLW, respectively. In both cases, it is observed that the degradation is relatively large for narrow devices; however, the relative change of I_{on} is much larger as shown in Fig.8. It is clear that higher channel strain devices show larger layout dependence for both N and PFETs. Even for allowable layout, I_{on} change by more than 10% is observed in high strained devices; therefore, it should be carefully taken into account these layout dependent performance changes for circuit design of multiple-stressor HP devices.

Finally, based on these results, 2-D DSL boundary effects were modeled with regression analysis and accounted for the BSIM4 model [10]. Fig.14 shows the procedure of SPICE simulation with taking into account the DSL boundary effects. By using this parameter related to mobility, threshold voltage, and saturation velocity, we can accurately simulate circuit performance with any layout of DSL boundary.

Conclusion

The effects of 2-D layout dependences caused by DSL integration were comprehensively investigated for 45 nm HP CMOS devices. It is clarified that the lateral boundary effects were simple and brings monotonic change in device performance; however, the transverse effects were complicated due to 2-D strain effects especially for narrow PFETs. These effects were accurately modeled and successfully taken into SPICE simulations.
Table 1. Details of MST and its sequence of process integration for the 45 nm HP bulk devices.

<table>
<thead>
<tr>
<th>Stressor</th>
<th>N or P</th>
<th>Core logic</th>
<th>I/O</th>
<th>SRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded SiGe (eSiGe) (PGS)</td>
<td></td>
<td>PFET</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Poly gate stressor (PGS)</td>
<td></td>
<td>NFET</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Tensile CESL (ICESL)</td>
<td></td>
<td>PFET</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Compressive CESL (cCESL)</td>
<td></td>
<td>PFET</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Fig.1. Distributions of gate contact resistance opened at the DSL boundary for different position relationships.

Fig.2. Cross-sectional SEM images of gate contact for scaled contact size at the DSL boundary.

Fig.3. Monitor layout for characterizing the impact of the DSL boundary.

Fig.4. Saturation V_D dependence on the lateral DSL boundary position.

Fig.5. Saturation V_D dependence on the transverse DSL boundary position.

Fig.6. DSL boundary effect on I_D variation for both lateral and transverse directions.

Fig.7. Relative NFET I_{on} as a function of SLL. Inset shows the I_{on}/I_{off} change for SLL = 0.2 and 2 μm.

Fig.8. Relative PFET I_{on} as a function of SLL. Inset shows the I_{on}/I_{off} change for SLL = 0.2 and 2 μm.

Fig.9. Relative NFET I_{on} as a function of SLW.

Fig.10. Relative PFET I_{on} as a function of SLW.

Fig.11. Relationship between $\Delta \mu$ and $\Delta \mu_{0}$ with varying lateral boundary.

Fig.12. Relationship between $\Delta \mu$ and $\Delta \mu_{0}$ with varying transverse boundary.

References