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1. Introduction 

Enhancement of carrier mobility using a strained-Si 
technology and elimination of gate-depletion using a metal gate 
are significant for performance improvements of miniaturized 
MOSFETs.  Induction of channel strain utilizing a high-stress 
SiN film as a contact etch stopper layer (CESL) has been 
reported as one of the strained-Si technologies [1-4].   As a 
metal gate, fully-silicided (FUSI) gate has been studied as a 
candidate for next generation CMOS [5-7], because it has a high 
consistency with the conventional MOSFET process with a 
poly-Si gate.  In FUSI gate process, it's usually necessary to 
planarize interlayer insulators and expose poly-Si gate 
top-surfaces before silicidation.  At the same time, SiN-CESL 
of gate top-surface is also removed.  It is considered that such 
discontinuous CESL induces different channel strain as 
compared with the conventional continuous CESL. 

In this paper, effects of disconnection of high-stress 
SiN-CESL on a gate-top are investigated with a focus on FUSI 
gate process.  Characteristics of poly-Si gate MOSFETs with 
discontinuous CESL are compared with that with continuous 
CESL for several SiN-stress conditions.  Characteristics of 
Ni-FUSI gate MOSFETs with high-stress SiN-CESL are also 
discussed.  It is demonstrated that discontinuous CESL still 
works, and the mobility enhancement utilizing a high-stress SiN 
film is also effective for FUSI process. 
 
2. Experimental 

Fig. 1 schematically shows the process flow.  A 2-nm-thick 
plasma-nitrided oxide was used for a gate dielectric.  After 
poly-Si deposition, gate doping was performed for NMOS and 
PMOS.  Then hard-mask SiN was deposited and gate pattering 
was implemented.  S/D-extension implantation, halo 
implantation, sidewall formation, deep-S/D implantation, and 
activation spike-RTA were implemented using the conventional 
techniques.  Then 5-conditions of SiN-CESL were deposited: 
60nm-thick and 30nm-thick SiN films with 1.7GPa tensile stress, 
a 20nm-thick SiN film with 1.3GPa tensile stress (control), and 
30nm-thick and 60nm-thick SiN films with 2.4GPa compressive 
stress.  After inter-layer SiO2 deposition and CMP 
planarization, samples were split into 3 structures: a control 
poly-Si gate sample with continuous CESL, a poly-Si gate 
sample with discontinuous CESL, and a Ni-FUSI gate sample 
with discontinuous CESL.  Fig. 2 shows the cross-sectional 
SEM images of samples with discontinuous CESL.  It can be 
seen that the gate-top SiN-CESL was successfully removed for 
both the poly-Si gate and the FUSI gate samples. 
 
3. Results and Discussion 

At first, comparisons are made for the poly-Si gate samples 
with continuous CESL and those with discontinuous CESL.  
Fig. 3(a) shows nMOSFET Ion-Ioff characteristics of the poly-Si 
gate with continuous CESL and their dependence on the SiN 
stress, and Fig. 3(b) shows those for the poly-Si gate with 
discontinuous CESL.  The drive current of the discontinuous 

CESL increases with the increase in the tensile stress as well as 
that of the continuous CESL.  As for pMOSFET in Fig. 4, the 
drive current increases with the increase in the compressive 
stress for both the continuous and discontinuous CESL.  It is 
found that drive current is modified by stress and thickness of 
SiN-CESL, even if CESL is disconnected on the gate-top. 

Fig. 5 shows the dependence of Gm,max on the CESL stress.  
In Fig. 5, the horizontal-axis represents the product of SiN stress 
and its deposited thickness, and the vertical-axis represents 
Gm,max normalized by that of the sample with a 20nm-thick SiN 
film with 1.3GPa tensile stress.  The dependence of Gm,max on 
SiN-stress is more significant for Lg=100nm than for Lg=1μm, 
which is the feature of mobility modulation by CESL [3].  
Fig. 5 also includes the FUSI gate sample.  It can be seen that 
the dependences of Gm,max on SiN-stress have same tendency but 
different slopes for 3 structures. 

Stress simulation was implemented to verify the effect of 
CESL discontinuity.  Fig. 6 schematically shows the simulated 
structure.  The height and length of gate poly-Si was 120nm 
and 100nm, respectively.  Initial thickness of SiN-CESL was 
60nm, and its removed thickness from gate-top was a parameter.  
Fig. 7 shows the dependence of channel (Si-surface) stress on 
the removed thickness.  For both tensile and compressive SiN, 
the stress of X-direction is increases and that of Z-direction is 
decreases with the increase in the removed thickness of 
SiN-CESL.  In the case of nMOSFET and tensile CESL, for an 
example, increase of X-stress increases Ids and decrease of 
Z-stress decreases Ids.  They are considered to be balancing the 
effect of disconnection of CESL on the mobility.  As a result, 
the continuous CESL and the discontinuous CESL have 
dependence on the stress of CESL in qualitatively the same but 
quantitatively the different manner.  In addition, for FUSI gate, 
the stress from gate-electrode should be considered, which was 
not included in this simulation. 
 
4. Conclusions 

Effects of high-stress SiN-CESL on fully-silicided gate 
process are investigated.  Characteristics of poly-Si gate 
MOSFETs and Ni-FUSI gate MOSFETs with discontinuous 
CESL are compared with that of poly-Si gate MOSFETs with 
continuous CESL for several SiN-stress conditions.  It is 
demonstrated that the discontinuous CESL works as well as the 
continuous CESL, although their simulated distributions of 
channel stress are not same.  Mobility enhancement utilizing a 
high-stress SiN film is applicable for FUSI gate process. 
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Fig. 7. Dependence of simulated channel stress on thickness of removed SiN-CESL.

Fig. 1. Schematic process flow.

Fig. 2. Cross-sectional SEM image of discontinuous CESL.
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Fig. 3. Dependence of Ion-Ioff characteristics of poly-Si gate NMOSFET on SiN-CESL.

Fig. 4. Dependence of Ion-Ioff
characteristics of poly-Si gate
PMOSFET on SiN-CESL.
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Fig. 5. Comparison of Gm,max as a function of CESL stress for 3 structures.  X-axis is
product of SiN stress and its thickness.  Y-axis is normalized at 1.3-GPa and 20-nm SiN.
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