Study of Parasitic Resistance Behavior and Its Extraction Method on Deeply Scaled MOSFETs

Center for Semiconductor Research and Development, Toshiba Corporation Semiconductor Company, 8, Shinshugitacho, Isogo, Yokohama, Kanagawa 235-8522, Japan
Phone +81-45-770-3642 e-mail: hideji.tsuji@toshiba.co.jp

INTRODUCTION

The mobility enhancement by the stress induced technique has been seriously studied to improve the transistor performance; accordingly, the suppression of parasitic resistance is required for increasing transistor performance [1]. Therefore, the accurate analysis of parasitic resistance (R_{para}) on scaled MOSFETs is significant [2] [3]. Terada’s method has been widely used because of its simplicity [4] [5]. However, additional calculations were needed to extract R_{para} of advanced MOSFETs because spreading and accumulation resistance have the strong dependency of gate voltage [6]. Since extremely scaled MOSFET utilizes strong halo scheme, non-uniform resistivity in channel regions makes it difficult to extract effective channel length and R_{para} [7].

In this paper, precise analysis of R_{para} is described focusing on 32-nm node technology for the first time. In addition, modified Terada’s method for analyzing the R_{para} in scaled MOSFET is proposed; moreover, this method is verified by hardware experimental data.

MODIFIED TERADA’S METHOD

Basic device structure of 32-nm node nMOSFETs was used in this simulation (Fig.1) and calculated threshold voltage (Vth) roll-off behaviour is shown in Fig.2. By using Terada’s method, a proportional relationship in R_{para}-L_{eq} is obtained for each different gate overdrive conditions (V_{gs}-V_{th}) (Fig. 3). Here, the intersection of these lines gives R_{para} and the overlap length between S/D extension (SDE) regions and gate electrode ($\Delta L = L_{g} - L_{ext}$). In this case, however, calculated ΔL indicates negative value (~7.1 nm) even though ΔL is set as positive in the original structure (See in Fig. 1). It is important to know the source of its inaccuracy. R_{para} values derived from quasi-Fermi potential as a function of gate overdrive indicates that R_{para} has strong dependency on gate overdrive even in the case of 32-nm node MOSFET with highly doped SDE (Fig. 4). Therefore, the extraction method of R_{para} and ΔL using gate overdrive modulation is not appropriate.

To solve this problem, the channel conductivity is modulated by channel impurity concentration instead of gate overdrive modulation in the modified Terada’s method. Here, it was previously confirmed that R_{para} modulation by changing channel impurity concentration is negligible. R_{ext}-L_{eq} plots with fixed gate overdrive is evaluated (Fig. 5), where channel impurity concentrations are varied by 1.5×10^{18} cm$^{-3}$ ~ 6.0×10^{18} cm$^{-3}$. It is confirmed that three lines intersect at one point, and that R_{para} and ΔL indicate good agreement in the values derived from quasi-Fermi potential and metallurgical junction position (Table 1). The conventional Terada’s method results are also shown as a reference. Consequently, it is proven that modified Terada’s method eliminates uncertainty in R_{para} extraction due to the gate overdrive effect on SDE resistance. These are also evaluated by hardware experimental results, where channel concentration was changed with multiple lithography and implantation steps within a wafer. As a result, it was verified that accurate R_{on} and ΔL extraction was achieved by this method.

EVALUATION OF PARASITIC RESISTANCE IN DEEPLY SCALED DOWN MOSFET

To suppress short channel effect, strong halo implantation is indispensable with device geometry scaling. However, increased dosage of halo implantation degrades the linearity of the R_{on}-L_{eq} plot due to the lack of uniform channel doping (Fig.7). Fig. 8 shows the simulation results using same mobility value which is independent of halo impurity dosage. These results clarify that inaccuracy of R_{para} extraction in strong halo scheme is due to carrier mobility modulation resulting from non-uniform channel doping.

Based on these analyses, modified Terada’s method is discussed. In the case of long channel regions (Fig.9 (a)), halo implanted areas of source and drain regions are separated. Then, the halo regions produce an additional resistance due to lowered mobility (R_{halo}). R_{halo} is constant in gate length variation; therefore, R_{para} is described as sum of external resistance (R_{ext}) and R_{halo} ($R_{para} = 2R_{ext} + 2R_{halo}$). On the other hand, in the case of short channel regions (Fig.9 (b)), halo implanted areas of source and drain regions are fully overlapped. The overlapped region is used as channel (R_{ch}). Therefore, R_{para} is simply expressed as sum of external resistances (R_{ext}) ($R_{para} = 2R_{ext}$). Extracted R_{para} from long channel regions is higher than that from short channel regions (Fig.10). This difference is caused by R_{halo}. Therefore, R_{para} extraction from short channel region is required to evaluate accurate external resistances (R_{ext}). Fig. 11 verifies that R_{para} and ΔL extracted from short channel regions with channel doping modulation method are in good agreement with R_{para} and ΔL calculated from quasi-Fermi potential and metallurgical junction position.

CONCLUSION

Modified Terada’s method is proposed, in which channel resistivity is modulated by channel impurity concentration instead of gate overdrive modulation. It was also proven that this method is valid to 20 nm or less gate length MOSFETs’ R_{para} extraction. In the case of strong halo condition, parasitic resistance should be extracted by R_{on} values analyzed from short channel region.

REFERENCES
Fig. 1. Dopant distribution profile of the simulated nMOSFET.

Fig. 2. V_{th} roll-off characteristic of the simulated nMOSFET.

Fig. 3. R_{on}-L_g characteristics as a function of gate overdrive. These are evaluated in triode region (V_{th}=10 mV). R_{on} is expressed as $R_{on}(V) = V_{th}/I_{th}(V)$.

Table 1. Comparison of R_{para} and ΔL in three types of extraction methods:

<table>
<thead>
<tr>
<th>Extraction method</th>
<th>R_{para} ((\Omega \mu m))</th>
<th>ΔL (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate overdrive</td>
<td>14</td>
<td>-7.1</td>
</tr>
<tr>
<td>Channel concentration</td>
<td>76</td>
<td>7.2</td>
</tr>
<tr>
<td>Quasi-Fermi potential/metallurgical junction</td>
<td>64</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Fig. 4. Dependence of R_{para} on gate overdrive extracted from quasi-Fermi potential. Strong dependency of R_{para} on gate overdrive is observed.

Fig. 5. R_{on}-L_g characteristics using modified Terada’s method. Precise extraction of R_{para} and ΔL is verified.

Fig. 6. Experimental results of R_{on}-L_g characteristics in nMOSFET. Higher channel concentration is applied to device B.

Fig. 7. Comparison of R_{on}-L_g plots at different halo dopant concentration. High halo dosage degrades the linearity of R_{on}-L_g plot.

Fig. 8. Comparison of R_{on}-L_g plots at constant electron mobility.

Fig. 9. Schematic views of halo effect.
(a) Halo implantation make gate edge resistance high and increase R_{para}.
(b) Halo regions are overlapped at entire the channel regions. This makes channel resistivity high at short channel.

Fig. 10. Parasitic resistance extraction at 40–100 nm region (a) and 15–25 nm region (b). Halo concentration is 1.0×10^{19} cm$^{-3}$ for each case.

Fig. 11. Halo dosage dependence of ΔL and R_{para}. Extraction from short channel region is required for precise analysis of ΔL and R_{para}.