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1. Introduction 
Stress engineering related to the frontend process as well 

as the backend process of LSI is required [1-7]. As for 
shallow trench isolation (STI) structures, it was reported that 
a high stress field in the structure causes a variation in 
electrical characteristics [8]. Although stress fields or strains 
in a Si-substrate are able to be detected by Raman 
spectroscopy or Nano Beam Diffraction (NBD), no effective 
technique was known for a measurement of nano-scale stress 
field in a dielectric material. Recently, it has reported that 
the cathodoluminescence (CL) system enabled us to detect 
nanometer-scale stress fields in SiO2 materials [9-14]. In this 
study, we performed overall estimation of stress fields with a 
STI structure filled with a SiO2 film, applying CL and 
Raman spectroscopy for the stress measurement in the SiO2 
film and the Si-substrate, respectively. Moreover, we 
calculated stress fields by finite element method (FEM) with 
the same STI structure. Thus, this study is the first trial to 
understand a whole image of stress fields in the STI 
structure, combining CL, Raman spectroscopy, and FEM 
analyses.  

 
2. Experiments 

STI structures were fabricated on a 300 mm diameter Si 
substrate, where a SiO2 films was deposited on the surface. 
Stress measurements were performed after SiO2 deposition 
by Raman spectrometer (HORIBA, Ltd., FR-3000) for the 
Si-substrate, and by CL system (HORIBA, Ltd., MP32-FE) 
for the SiO2 film. An excitation laser of the Raman 
spectrometer was water cooled Ar with 363.8 nm excitation 
line. The outline or principle of CL system is shown in Figs. 
1 or 2 [12], respectively. An electron irradiation on a 
material causes an excitation of optically active parts, and 
their photon energy (CL wavelength) is altered by the 
amount of residual stress (Fig. 2). FEM analyses were 
performed with a non-linear finite element analysis program. 
 
3. Results and Discussions 

Figure 3 shows the images of measurement area. The 
stress mapping of the SiO2 film on active areas (AA) or the 
Si-substrate is shown in Figs. 4 or 5, respectively. In Fig.4, 
the distribution of SiO2 stresses within the trench was 
eliminated, because the CL wavelengths in the trench were 
different from those on the AA due to a luminescent light 

interference that was caused by a variation in SiO2 
thicknesses between the trench and the AA. Figure 6 shows 
the FEM result of the Si-substrate with the same structure. 

We observed that a tensile stress field appears in the 
center area of the AA both in the results of CL (SiO2 film) 
and Raman (Si-sub.) spectroscopy. In addition, we also 
found stress shifted region more on tensile side that locally 
appear within the SiO2 film near the edge of the AA, 
corresponding to the FEM stress distribution in the SiO2. On 
the other hand, at the edge of the AA, high compressive 
stresses occur within the Si-sub. Moreover, CL result also 
shows a compressive side stress shift along the AA/STI 
boundary. These phenomena can be attributed to the 
intrinsic tensile stress of the SiO2 film, which causes the 
large stress variation along the AA/STI boundary. 

Thus, the stress values as well as the distribution 
tendencies show an excellent agreement with the results of 
CL and Raman spectroscopy. This agreement also suggests 
that CL spectroscopy is a reliable method to evaluate 
nano-scale stress fields. Stress values of CL spectroscopy 
are now being determined. 
 
4. Conclusions 

  We performed overall estimation of stress fields with 
a STI structure filled with a SiO2 film by CL and Raman 
spectroscopy, as well as FEM. These results showed an 
excellent agreement one another, revealing that large 
variation in stresses at edges of an AA induced by the 
intrinsic tensile stress of the SiO2.  
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Fig.6 Stress contour map calculated by FEM
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Fig.4 Stress distribution in SiO2 film upon  
AA area obtained by CL  spectroscopy
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Fig.5 Stress distribution in Si-sub. obtained by 
Raman spectroscopy
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Fig.1 Nano-stress microscope using CL spectroscopy
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Fig.2 Relation between stress and CL energy
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(a) SEM top image (b) Cross sectional model

Fig.3 Images of observed area 
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