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1. Introduction 

Magnetic tunnel junctions (MTJs) with highly oriented 
(001) MgO barrier/ ferromagnetic electrodes, which offer 
giant tunnel magnetoresistance (TMR) ratio [1]-[7] at room 
temperature (RT) and current-induced magnetization 
switching (CIMS) at relatively low critical current density 
[8]-[11], have attracted much interest because of the appli-
cation to spintronics devices such as spin transfer torque 
random access memory (SPRAM) and MTJ-based logic 
circuits[12]-[14]. Realizing high TMR ratios in sputtered 
CoFeB/MgO/CoFeB MTJs is of prime importance from a 
technology point of view, because sputtering is the pre-
ferred and established method for industrial applications. In 
this MTJ system, the TMR ratio of 500% at RT and 1010% 
at 5 K was recently observed [15]. However, the details of 
the CoFeB electrode composition and thickness which 
yield large TMR ratio for exchange biased (EB)-SV MTJs 
with MnIr pinning layer and pseudo-spin valve (P-SV) 
MTJs without MnIr have not yet been fully clarified. 

In this work, we investigated the dependence of TMR 
ratio on CoFeB electrode composition and thickness for 
EB-SV and P-SV MTJs.  
 
2. Experimental conditions 

The rf-sputtered MTJs studied here have stacking struc-
ture of substrate/Ta(5)/Ru(20)/Ta(5)/NiFe(5)/ MnIr(8)/ 
CoFe (2.5) / Ru (0.8) / (CoxFe100-x)80B20 (3) / MgO (1.5)/ 
(CoxFe100-x)80 B20(0-10)/Ta(5)/Ru(10) for EB-SV MTJs and 
Ta(5)/ Ru(20) /Ta (5) / (CoxFe100-x)80B20 (2-7) /MgO (1.5, 
2.1) / (Cox Fe100-x) 80 B20(4)/Ta(5)/Ru(10) for P-SV MTJs (in 
nm). In CoFeB layer, the B composition was fixed to 20 
at% and the Co composition x was changed from 25 to 75 
at%. The CoFeB layer thickness tCoFeB was varied from 0 to 
10 nm by using the slide shadow mask technique. All MTJs 
were fabricated by photolithography (electron-beam li-
thography) and Ar ion milling with a junction size of 0.8 × 
4 (0.1 × 0.2) μm2, and then were annealed at Ta = 
270-525°C for 1h in a vacuum under 4 kOe. The TMR ratio 
was measured using a dc four probe method in the mag-
netic field range of ±3 kOe. Crystal structures were inves-
tigated by high resolution transmission electron microscopy 
(HRTEM) on samples prepared separately for its study; the 
stacking of the samples for HRTEM were substrate/Ta(5) 
/(CoxFe100-x)80B20(3) /MgO(1.5)/ (CoxFe100-x)80B20 (10)/Ta(3) 
with x = 25% and 75%. 

 
3. Results and discussion 

Fig. 1 shows TMR ratios measured at RT as a function 
of annealing temperature (Ta) for EB-SV MTJs with x = 
50% and P-SV MTJs with x = 25% and 50%. The TMR 
ratios in these different MTJ types are approximately the 
same at Ta below 400 °C. The TMR ratio for P-SV contin-
ues to increase up to Ta =475 °C. In contrast, the TMR ra-
tios for EB-SV start to decrease at Ta = 425 °C and con-
tinue decreasing. The TMR ratio of EB-SV with x = 50 
annealed at Ta = 400oC reaches 361% at RT (578% at 5K). 
The P-SV MTJs with x = 50% annealed at 450-475 oC 
show the TMR ratio of 450% at RT (747% at 5K.) By re-
placing the Co40Fe40B20 electrode with Fe-rich Co20Fe60B20 
in P-SV MTJs, the TMR ratio increased further to 472% at 
RT (804% at 5K). Energy dispersive x-ray analysis (not 
shown) reveals that annealing at 450°C induces interdiffu-
sion of Mn and Ru atoms into the MgO barrier and ferro-
magnetic layers in EB-SV MTJs [7]. The interdiffusion of 
Mn and/or Ru is seemed to be one factor of the decrease in 
the TMR ratio at Ta= 425°C in EB-SV. 

When the MgO thickness was increased from 1.5 to 2.1 
nm, while maintaining the same electrode conditions (x = 
25% and thickness 4.3 nm) as the P-SV MTJ that obtained 
the highest TMR ratio, a TMR ratio of 500% at RT was 
recorded. The TMR ratio at 5 K was 1010%. 

0

100

200

300

400

500

600

200 300 400 500 600

Annealing temperature (oC)

TM
R

 ra
tio

 (%
)

(Cox Fe100-x )80B20
x  = 25

x  = 50EB-SV
 x  = 50 P-SV

◆  t MgO = 2.1
●  t MgO = 1.5
○  t MgO = 1.5

t MgO = 1.5

 
Fig.1. TMR ratio as a function of annealing temperature for 
EB-SV and P-SV MTJs having (CoxFe100-x)80B20 electrode 
with x = 25 and 50.
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Fig. 2 shows the TMR ratio as a function of the CoFeB 

electrode thickness (tCoFeB) for EB-SV and P-SV MTJs with 
Co composition x = 25% and 75%, which are annealed at 
Ta= 375 and 475 °C, respectively. There is a clear differ-
ence among MTJs having different Co composition. For 
EB-SV MTJs with x=25% seen in Fig. 2(a), the TMR ratio 
is almost constant when tCoFeB is more than 2nm. The 
EB-SV MTJs with x=75% showed a marked decrease of 
the TMR ratio with increasing tCoFeB. As shown in Fig. 2(b), 
similar CoFeB thickness dependence was observed also in 
the P-SV MTJs. 

To understand the CoFeB thickness dependence of the 
TMR ratio of the EB-SV and P-SV MTJs having different 
Co compositions, HRTEM was employed for structural 
characterization. Fig. 3 shows the cross-sectional HRTEM 
images of Ta(5) /(CoxFe100−x)80B20(3) /MgO(1.5) 
/(CoxFe100−x)B20(10) /Ta(3) films with x = (a) 75% and (b) 
25%, which were annealed at 450 °C for 1 h. As shown in 
Figs. 3(a) and (b), the 3-nm-thick bottom CoFeB electrodes 
in both samples crystallized into a bcc (001) texture, 
whereas the 10 nm-thick top electrodes developed different 
structural features depending on the Co composition. The 
top CoFeB electrode with x = 75% shown in Fig. 3(a) crys-
tallized in a granular bcc (001) structure embedded in an 
amorphous matrix. In contrast, the top electrode with x = 
25% shown in Fig. 3(b) crystallized to bcc (001) in the en-
tire interface region adjacent to the MgO barrier. The low 
TMR ratio in the x = 75% sample with relatively thick 
CoFeB electrode can thus be explained as a result of inho-
mogeneous crystallization shown in Fig. 3(a). 

 
4. Conclusions 

The optimum annealing temperature (Ta=450-500oC) 
that results in the maximum TMR ratio for P-SV MTJs is 

higher than that (Ta = 400 oC) of EB-SV MTJs. The absence 
of diffusion of Mn and/or Ru into the MgO barrier at high 
Ta above 450oC is a factor for the high TMR ratios in P-SV 
MTJs. A remarkable difference in the CoFeB thickness de-
pendence of TMR ratio between x = 25 and x = 75 is ob-
served for the EB-SV and P-SV MTJs. From the 
cross-sectional HRTEM images, the difference in the crys-
tallized structure of CoFeB electrode with x = 25 and x = 75 
was observed, which appears to be one of the factors de-
termining the difference of the film thickness dependence 
of the TMR ratio on the CoFeB composition. The maxi-
mum TMR ratio of 500% at RT (1010% at 5 K) was ob-
served in a P-SV MTJ with 4- and 4.3-nm-thick 
(Co25Fe75)80B20 electrodes, and 2.1-nm-thick MgO an-
nealed at 475 °C. 
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Fig. 3 Cross-sectional HRTEM images for Ta(5) / 
(CoxFe100−x)80 B20(3) /MgO(1.5) /(CoxFe100−x)B20(10) /Ta(3) 
films with x = (a) 75% and (b) 25% annealed at 450 °C for 
1 h. 
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Fig.2. TMR ratio as a function of CoFeB electrode thickness 
for (a) EB-SV and (b) P-SV MTJs having (CoxFe100-x)80B20 
electrode with x = 25 and 75. Open symbols and a filled tri-
angle correspond to MTJs with 1.5 and 2 nm- thick MgO 
barrier, respectively. 
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