
Characterization of Zinc Oxide Films Grown by a Newly Developed 
Plasma Enhanced MOCVD Employing Microwave Excited High Density Plasma  

Hirokazu Asahara1,2, Atsutoshi Inokuchi1,3, Kohei Watanuki1,4, Masaki Hirayama1,  
Akinobu Teramoto1, and Tadahiro Ohmi1 

1New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aza Aoba-ku, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan  
Phone: +81-22-795-3977, Fax: +81-22-795-3986, E-mail: asahara@fff.niche.tohoku.ac.jp 

2ROHM CO., LTD., 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan 
3TOKYO ELECTRON LTD., Mitsusawa 650, Hosaka, Nirasaki, Yamanashi 407-0192, Japan 

4UBE INDUSTRIES, LTD., 1978-10, Kogushi, Ube, Yamaguchi 755-8633,Japan 
 

1. Introduction 
The radical reaction based semiconductor manufacturing has 

been developed using microwave excited high density plasma with 
very low electron temperatures where reactions are promoted by 
the reactivity of the radical itself such as oxygen radicals (O＊) for   
surface oxidation and NH-radicals (NH＊) for surface nitridation so 
that the process temperatures are lowered compared to those of 
current molecule reaction based semiconductor manufacturing, 
such as high quality silicon surface oxidation at around 400 °C and 
high quality silicon nitridation at around 600 °C [1]. It has been 
reported that high quality CVD-SiO2 and CVD-Si3N4 film can be 
formed by this plasma equipment [2-3].  

On the other hand, there has been a great deal of interest in zinc 
oxide (ZnO) materials lately. ZnO is an extensively studied 
transparent conductive film as a valid alternative to indium tin 
oxide for different applications, ranging from flat panel displays 
and solar cells to thin film transistors and optoelectronics, while 
ZnO has a direct wide band gap of 3.37 eV. Owing to the strong 
exciton binding energy of 60 meV, ZnO is recognized as a 
promising photonic material in the UV region. High quality ZnO 
film formation at low temperature is required for light emitting 
device and transparent conductive film, and some papers has been 
reported, recently [4-5]. 
 In this paper, we demonstrate that the newly developed plasma 
enhanced metal-organic CVD (MOCVD) [1] applied a compound 
semiconductor such as ZnO firstly, and characteristics of ZnO 
films are very good, by optimization of equipment and process 
conditions. This method has possibilities to form very high quality 
ZnO film at low temperature. 
 
2. Experiments 

Low electron temperature and high-density plasma equipment 
was used for the plasma enhanced MOCVD (PE-MOCVD). 

Fig. 1 shows the schematic view of the equipment. Microwave 
(2.45 GHz) is introduced into the chamber through the dielectric 
plate of quartz. As a result, high-density plasma is excited 
immediately below the dielectric plate. Plasma excitation gas (Ar) 
and process gas (O2) are introduced into the plasma excitation 
region. The lower shower nozzle for the supply of material gases 
(Zn, Ga precursor) is set at the diffusion plasma region with low 
electron temperature. Fig. 2 shows electron temperature and 
electron density of this equipment measured by single probe 
method. The electron temperature at excitation region and 
diffusion region are very low (~<2.0 eV). Electron density at 
excitation region is very high (>1012cm-3). Material gases are 
carried from MO supply system. For accurate and stable supply of 
material gases, temperature, pressure and gas flow rate in the 
system are exactly controlled. Using the lower shower nozzle 
having many small gas injection holes, material gases are supplied 
toward the wafer. Since the plasma excitation region is limited to 
the space immediately below the dielectric plate, the CVD process 
region is completely separated from the plasma excitation region. 
Therefore, the equipment can control the decomposition of metal 
organic gases in a diffusion plasma region by control of an electron 

temperature and plasma density. The ZnO films were fabricated by 
using Ar gas as plasma excitation gas and O2 gas and Zn precursor 
gas. Fig. 3 shows comparative table and vapor pressure curve of 
Zn precursor materials. MOPD, Diisopropylzinc (DIPZ) and 
Dimethylzinc (DMZ) were estimated. A-plane sapphire 
(a-sapphire) and corning glass were used for substrate. Ga doped 
ZnO transparent conductive films were fabricated by using 
Triethylgallium (TEG) as Ga precursor gas.  

 
3. Results and discussions 

Fig. 4 shows results of X-ray diffraction (XRD) and X-ray 
photoelectron spectroscopy (XPS) of ZnO films on a-sapphire 
substrate using MOPD for Zn material. It turned out that Crystal 
structure of the film is wurtzite structure, and the film consists of 
Zinc and Oxygen. The composition of the film is similar to bulk 
ZnO grown by hydrothermal method.  

Fig. 5 shows the FWHM of (0002) rocking curve as a function 
of process parameter. MOPD and glass were used as Zn source and 
substrate. The FWHM can be reduced as microwave power 
increases and oxygen gas flow rate increases. There is reducing 
trend of FWHM as wafer-stage temperature increases. At power is 
1500W (4.3W/cm2), there isn't so much difference between 400 °C 
and 300 °C. It is considered that radical reaction generated by the 
plasma contributes to crystal growth of film. 

Fig. 6 shows SIMS profile of carbon content in the films. There 
are material dependency and process condition dependency. Film 
using DMZ contains the much carbon. The carbon content can be 
reduced as microwave power increases and oxygen gas flow rate 
increases. Carbon concentration is less than the detection limit of 
percent order in XPS.  

Fig. 7 shows scanning electron microscope (SEM) images 
before and after annealing treatment of ZnO films formed using 
DMZ and a-sapphire. By annealing treatment at 700 °C, crystalline 
and mobility are improved and grain boundary disappears. 

Fig. 8 shows Ga content and electric property of Ga doped ZnO 
films on the sapphire and the glass. Ga content in GZO film, 
carrier concentration and Mobility of film can be controlled by 
quantity of TEG.  

 
4. Conclusions 

We showed the good characteristics of ZnO films grown by a 
newly developed plasma enhanced MOCVD employing 
microwave excited high density plasma. 

By selection of material gasses, optimization of equipment and 
process conditions, this method can form high quality ZnO film 
because this method has possibilities to control dissociation of 
metal-organic materials. Using RLSA technology, substrate is 
possible to grow at very low temperature and for large display. 
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Fig. 6 Carbon content in ZnO film by SIMS. Film using DMZ 
contains the much carbon. The carbon content can be reduced as 
microwave power increases and oxygen gas flow rate increases. 
Carbon concentration is less than detection limit of %-order in 
XPS.

　　

Fig. 7 SEM images of before and after annealing treatment of 
ZnO film formed using DMZ and a-sapphire. By 700 °C 
annealing treatment, mobility increased from 23 cm2/Vs to 46
cm2/Vs and grain boundary disappeared. 

Fig. 8 Evaluation of Ga doped ZnO transparent conductive film on 
sapphire and glass. These are SIMS and Hall Effect measurement 
results. Regulating TEG supply quantity can control Ga content in 
GZO film, carrier concentration and Mobility of film. 
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Fig. 5 Growth condition dependence  
of (0002)RC FWHM.  
Zn source: MOPD, substrate: glass 
(a) microwave power 
 : High power is better.  
(b) Oxygen mass flow  
 : High O2 flow rate is better. 
(c) wafer-stage temperature  
 : High temperature is better. 
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