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1. Introduction

A significant problem in the development of CMOS
devices on Ge substrates has beeen formation of defective
interfacial transition regions with Ge-O bonds between Ge
substrates and gate dielectrics [1]. One solution is to
deposit a thin Si layer on the Ge, and then form a
passivating/protective SION interfacial layer. This will
increase channel mobilities with respect to Si, but add ~0.3
nm to the equivalent oxide thickness [2]. This paper
presents an aternative approach in which a sacrificia
interfacial GeN layer protects the Ge surface from
oxidation during deposition. This layer is then removed by
a post deposition anneal in Ar at 800°C leaving the high-k
HfO, didlectric in direct bonding-contact with the Ge
substrate with no detectabl e nitride transition region.

2. Experimental Methods

HfO, thin films ~2 to 6 mn thick were plasma
deposited onto plasma-nitrided Ge substrates and compared
with HfO, films deposited onto S substrates with ~0.6-0.8
nm thick SION interfacia layers. The O K; and N K edge
gate stack spectra were studied by near edge X-ray
absorption (NEXAS) spectroscopy. These spectra were
obtained at beam-line 10-1 at SSRL. The combination of
resonant atom-specific O K; and N K; spectra are a good
way to study buried interfaces, and relationships between
bonding in oxide dielectrics, and nitrided interface regions.

3. Experimental Results
Fig. 1(a) is the N K; spectrum for remote plasma
assisted nitridation (RPAN) of a Ge (100) substrate used for

deposition of HfO, films.
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Fig. 1. N K1 Spectra: (a) Ge interface nitridation RPAN process. (b) HfO2 2nm

film after 800°C anneal.
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Fig. 2. O K1 Spectra: 2 nm O2 on Ge (100) (a) as-deposited and (b) after 800°C

anneal.
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Fig. 3. SION-Si substrates HfO2 (a) 2 nm and (b) 6 nm after 900°C annealsin Ar.

The OK ; spectra in Fig. 2 will be compared with the
spectra in Fig. 3 for HfO, deposited on SION interfaces.
The broader spectral features for the as-deposited films in
Fig. 2(a) are attributed to < 2 nm nano-crystalite grains,
and the sharper features in 800°C annealed films in Fig.
2(b) to nano-crystallite grains larger than about 4 nm. In
particular, the splitting of the band edge E, state into a
doublet in Fig. 2b is due to a collective Jahn-Teller
distortion that removes the degeneracy [4].

Fig. 3 displays OK; spectra for the S-SiON-HfO,
hetero-stacks that indicate E; @ and T,y ¢ Hf d-state
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4. Summary

The combination of resonant O and N K; edge spectra
is an idea way to study buried interfaces. The results in
Figs. 1-4 demonstrate the removal of interfacid GeN
transition regions for annealed stacks allows the Ge surface
to act as atemplate for mosaic HfO, and TiO, grain growth
to >4 nm, and thus promotes observable J-T spittingsin O
K edge spectra. The spectral weighting factors for these
splittings are different than those for annealed HfO, on
SION terminated S substrates supporting a Ge template
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Fig. 4. OK1 TiO2: (a) on aGeN interfacial layer, (b) after anneal in bonding contact with Ge.

features for the 2 and 6 nm thick 900°C annealed films on
S substrates. Fig. 3(a) displays broad spectral features
similar to those for the as-deposited 2 nm thick HfO, films
in Fig. 2(a). The absence of J-T degeneracy splitting for the
band-edge Hg E; features indicates of a suppression of
coherent m-bonding [3,4]. This incoherent w-bonding in 2
nm thick HfO, as-deposited and 900°C annealed films on
SION is associated with homogenous nucleation of ~2 nm
nano-grains with a length scale below the threshold level
for coherent n-bonding [3]. Coherent nt-bonding with a 3T
distortion is observed in annealed 6 nm thick films: nano-
grains are > 3.5-4 nm and their size is not constrained by
the thickness of the film.

Figure 4 shows O K; spectra for nano-crystalline TiO,:

novel  application  for
NEXAS based on the
resonant  character  of
absorption 1s state
absorptions for the respective O K and N K edges. Their
X-ray energy difference, and the transparent spectral
windows of oxidesto both X-ray absorption and electron
emission, is critical for this technologically important
application [1].
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