Capacitor-Shunted Transmitter for Power Reduction in Inductive-Coupling Clock Link

Amit Kumar, Noriyuki Miura and Tadahiro Kuroda

Department of Electronics and Electrical Engineering, Keio University 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan Phone: +81-45-563-1151 Ext: 41068 E-mail: amit@kuro.elec.keio.ac.jp

1. Introduction

Recently there has been a lot of interest in the field of wireless chip to chip communication. Several papers [1-2] have reported high bandwidth for data transmission which also use wireless clock recovery circuits. The clock link in this scheme consumes more power than the data link [1]. The conventional wireless clock link uses H-Bridge transmitter to transmit the clock. This paper presents a simple and novel circuit namely Capacitor-shunted transmitter. A test chip is fabricated in 0.18 μ m Technology and the measurement shows that the power consumption of the transmitter is reduced by about 50%.

Figure 1 presents the conceptual diagram of the inductively coupled clock transceiver. Clock of the transmitter *Txclk* is transmitted from the upper metallic inductor which produces a magnetic field and the change in this magnetic field produces an induced voltage at the receiver inductor. The receiver senses the voltage and clock of the receiver *Rxclk* is recovered by the clock transceiver. The clock frequency is varied from 0.65GHz to 1.6GHz to check the power dissipation for varying frequency.

2. Capacitor-Shunted Transmitter

Figure 2(a) presents the schematic diagram and the simulation result of the conventional H-Bridge transmitter. Figure 2(b) present the schematic diagram and the simulation result of the proposed Capacitor-shunted transmitter. The transmitter transmits the clock *Txclk* which produces the current I_{TC} at the transmitter inductor. This change in current produces an induced voltage V_{RC} at the receiver inductor. The receiver recovers the clock *Rxclk* as shown in the figure. The power consumed P_{TX} as a function of time is also shown to compare between the H-Bridge and the Capacitor-shunted transmitter.

The capacitor shunted transmitter consumes power only during the charging time of the capacitor; hence the power consumed is reduced to half. A hysterisis comparator is used as a receiver.

3. Test Chip Measurement

Figure 3 shows microphotograph of the test chips fabricated in 0.18μ m CMOS. The receiver chip is placed on top of the transmitter chip, for both the chips to be in face up position. The upper chip is polished to 10μ m thickness. Communication distance including an adhesive layer is 15μ m. The clock transceiver transmits 1GHz clock by the metal inductor with a diameter of 200μ m. Two transmitter circuits are investigated namely the H-Bridge and the Capacitor-shunted transmitter circuit.

Figure 4 shows the received clock at the receiver along with the schematic of the experimental setup. RMS jitter is 1.6ps in *Rxclk*, some of which is caused by 1ps jitter in *Txclk* by an external clock generator at 1GHz.

Figure 5 shows the power dissipation as a function of frequency for both the H-Bridge transmitter and also the Capacitor-shunted transmitter. The H-Bridge clock transmitter consumes 1.5mW of power whereas the Capacitor-shunted transmitter consumes 0.75mW of power at 1GHz.

4. Conclusion

A novel Capacitor-shunted clock-link transceiver was investigated. A test chip was fabricated in TSMC 0.18μ m CMOS. Simulation results and the measurement results show that the new Capacitor-shunted transmitter consumes half the amount of power as compared with the H-Bridge transmitter. The performance summary of the chip is given in figure 6.

Acknowledgements

This work is supported by CREST/JST. The 0.18µm CMOS VLSI chip in this study was fabricated at TSMC.

References

- N. Miura, et al., "A 1Tb/s 3W Inductive-Coupling Transceiver for Inter-Chip Clock and Data Link" *IEEE ISSCC Dig Tech. Papers*, pp.424-425, Feb. 2006.
- [2] N. Miura, et al., "A 0.14pJ/b Inductive-Coupling Inter-Chip Data Transceiver with Digitally-Controlled Precise Pulse Shaping," ISSCC Dig. Tech. Papers, pp.358-359, Feb. 2007.

Fig.1 Inductive-coupling clock link.

Fig.2 Schematic Diagram and Simulated waveforms for (a) H-Bridge Transmitter and (b) Capacitor-shunted Transmitter

Fig.3 Microphotograph of stacked test chips.

Fig.5 Measured power dissipation.

Fig.4 Measured received clock and jitter.

scope

	H-Bridge Transmitter	Capacitor-Shunted Transmitter
Power Dissipation	1.55mW	0.75mW
Clock Rate	1GHz	
Channel Area	200μm x 200μm	
Distance	15µm	
Jitter	1.46ps	1.68ps
Process	180nm CMOS (<i>V_{DD}</i> =1.8V)	

Fig.6 Performance Summary.