In-Situ Fluorinated Low-Temperature Polycrystalline Silicon (LTPS) Thin-Film Transistors (TFT) with Low Trapping and Off Current by CF₄ Plasma

Wen-Hsiang Sung¹, Chyuan-Haur Kao¹, Hsing-Kan Peng¹, Shang-Feng Huang², Wen-Fa Tsai², Chi-Fong Ai², Chih-Rong Chen³ and Chao-Sung Lai¹

¹Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan
²Physics Division, Institution of Nuclear Energy Research, Tao-Yuan, Taiwan, R.O.C.
³Material Science Service Corporation, Hsin-Chu, Taiwan, R.O.C.
Phone: +886-3-2118800 ext. 5786 E-mail: cslai@mail.cgu.edu.tw

1. Introduction

The polyoxide capacitors have attracted attention that the cause due to the possibility to realize the interpoly dielectric layer’s memory [1] and thin film transistors (TFT) [2]. In most semiconductors of fluorine implant applications [3], it must have lower trapping rate and high dielectric breakdown field. In this work, in-situ fluorinated Low-Temperature Polycrystalline Silicon (LTPS) Thin Film Transistor (TFT) with low trapping and off current by CF₄ plasma was demonstrated.

2. Experiment

Aluminum/polyoxide/n⁺-polysilicon capacitors were fabricated in this study. P-type Si wafers were thermally oxidized to have an oxide of a thickness of 600 nm. Then, a polysilicon film (poly-1) of 300 nm was deposited at 625 °C. It was implanted with phosphorous following activated for 30 sec in an N₂ ambient at 950 °C to obtain a sheet resistance of 81–88 Ω/□. The polyoxide sample was treated under CF₄ plasma 30 sec and 1 min, respectively. The thickness of 50 nm of polyoxides were in-situ deposited by mixture SiH₄ and N₂O gas at 300 °C in the same chamber. An aluminum gate of a thickness of 300 nm was deposited on polyoxide films. After self-aligned defining aluminum gate and polyoxide patterned to form capacitors. The schematic polyoxide capacitors cross-section and detail process flow were shown in Fig. 1(a) and (b). For the device characterization, a polysilicon gate TFT was demonstrated also. The polyoxide capacitors and LTPS TFT performance was measured using a HP4156C.

3. Results and Discussion

Fluorinated Polyoxides

Figure 2(a) and (b) shows the J-E curves under both polarity for (a)-Vₜ and (b)+Vₜ, respectively. The breakdown field was increased as increasing CF₄ plasma treatment. The leakage current was suppressed under the high electric field both for substrate (+Vₜ) and gate (-Vₜ) injection. Figure 3(a) and (b) shows the gate voltage shifts of the -Vₜ and +Vₜ under constant current stresses for control and CF₄ plasma treatment samples. In Figure 3(a), the charge trapping properties of all samples had a hole trapping which has been attributed to produce the donor-like interface states at initial stress time, because of the PEOXide was kind of oxide of nitrogen contents (from N₂O gas mixture) and that the nitrogen piled up on top gate and polyoxide interface (SIMS plot not shown) [4]. In addition, It can be seen that the CF₄ plasma treatment of electron trapping rate of slope is slighter than control sample for both -Vₜ and +Vₜ constant current stress. Figure 4 shows the Weibull plots of charge-to-breakdown for control, pre-CF₄ 30 sec and 1 min polyoxide capacitors under 2μA/cm² stress. The pre-CF₄ 1 min polyoxide has larger Qbd and tight Qbd distribution than control polyoxide sample. This improvement has been attributed to reduce electron trapping and strong Si-F bonding than Si-O on interface region. Figure 5 shows the fluorine ions effectively piled up at interface of secondary ion mass spectroscopy (SIMS) profile. The surface morphology of polyoxide was studied. Figure 6 and Fig. 7 shows the TEM and AFM image of surface of control, pre-CF₄ 30 sec and 1 min, respectively. In Fig. 6 and Fig. 7, the surface and root means Square (rms) variations were trifling on surface region.

Acknowledgements

This work was supported by the National Science Council under the contract of NSC 95-2221-E-182-060.

References

Fig. 1(a) The schematic cross-section for polyoxide capacitors, (b) process flow for polyoxide capacitors.

Fig. 2 The J-E characteristics of the control, pre-CF4 30 sec & 1 min treatment on N+-polysilicon films for the top gate applied with a (a) negative bias (b) positive bias.

Fig. 3 The curves of gate voltage shifts (ΔV_g) versus stress time of the control, pre-CF4 30 sec & 1 min treatment on N+-polysilicon films for the top gate applied with a (a) negative gate constant current (under -0.2 $\mu A/cm^2$) stress (b) positive gate constant current (under 0.21 $\mu A/cm^2$) stress.

Fig. 4 The Weibull distribution Qbd plots for the control, pre-CF4 30 sec & 1 min treatment on N+-polysilicon films for the top gate applied with a positive bias.

Fig. 5 SIMS profile analysis of silicon, oxygen, fluorine for pre-treatment CF4 1 min.

Fig. 6 AFM images of N+-polysilicon surface of (a) control (b) pre-CF4 30 sec (c) pre-CF4 1 min samples with roughness root mean square (rms) of 3.9 nm, 3.8 nm and 4.3 nm, respectively.

Fig. 7 Cross-sectional TEM pictures of (a) control (b) pre-CF4 30 sec (c) pre-CF4 1 min samples, respectively.

Fig. 8 Transfer characteristics of the control, pre-CF4 30 sec & 1 min treatment of LTPS TFT.