Improvement of Electrical Characteristics for Novel Fluorine-Incorporated Poly-Si TFTs with TiN Gate Electrode and Pr₂O₃ Gate Dielectric

Chia-Wen Chang¹, Jiun-Jia Huang¹, Hong-Ren Chang¹, Jam-Wem Lee², and Tan-Fu Lei¹ ¹Institute of Electronics, National Chiao-Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan, R.O.C.

Phone: +886-3-5712121-54219 Fax: +886-3-5724361 E-mail: jiawen.ee92g@nctu.edu.tw

²Taiwan Semiconductor Manufacturing Company, Hsinchu, 30010, Taiwan, R.O.C.

Introduction

In recent years low-temperature polycrystalline silicon thin-film transistors (poly-Si TFTs) have been widely used in active-matrix liquid crystal displays (AMLCDs) [1]. The major application of poly-Si TFTs in AMLCDs lies in integrating the peripheral driving ICs, and the pixel switching elements on the glass substrate to realize system-onpanel (SOP) purpose [2]. The peripheral driving ICs have the electrical characteristics requirement of low operation voltage, low threshold voltage, and high driving current, however conventional solid-phase crystallization (SPC) poly-Si TFT with SiO₂ as gate dielectric can not satisfy the needs. In order to address this issue, several high- κ gate dielectrics including HfO_2 and $LaAlO_3$ were proposed to increase the gate capacitance density for better gate controllability with keeping physical gate dielectric thickness [3], [4]. However, unfavorable gate-leakage was introduced from the crystalline high-k material [5]. Recently, Praseodymium oxide (Pr_2O_3) becomes a promising high- κ material with high κ value, low gate-leakage, and superior thermal stability [6]. On the other hand, the detrimental GIDL current from the grain boundaries trap states was observed in the unhydrogenated poly-Si TFT [7]. Hence, fluorine ion implantation was utilized to passivate the trap states to improve the device performance [9],[10]. But it may not be suitable for glass application due to unfeasible large area implantation and high dopant activation annealing.

In this paper, an effective, low-cost, and processcompatible fluorine-based plasma treatment on poly-Si was proposed. We integrated TiN gate, high- κ Pr₂O₃ gate dielectric, and CF₄ plasma treatment with TFTs for the first time.

2. Experimental

The cross-sectional schematic diagram and the transmission electron microscopy (TEM) micrograph of the proposed metal gate, high- κ dielectric TFT are shown in Figs. 1, and 2. Briefly, the fabrication begins by depositing a 100-nm undoped amorphous silicon (α -Si) layer on a thermally oxidized Si wafers, followed by the SPC process. After the definition of active region, a CF₄ plasma was performed at 350 °C for 15 s with pressure of 200 mtorr and power of 10 W in PECVD chanber. Next, a 35-nm Pr₂O₃ film was deposited by e-gun evaporation system, followed by a furnace annealing at 600 °C for 30 min in O₂ ambient to improve the gate dielectric quality. A 300-nm TiN film was sequentially deposited, and then patterned to form

gate electrode. Next, a self-aligned source/drain implantation, dopant activation, passivation oxide, contact hole, metal pads, and N_2/H_2 sintering were successively performed. For comparison, the control TFT without the CF₄ plasma treatment was prepared with the same process flow.

3. Results and Discussion

As shown in Fig. 3, the measured XPS spectra of the Pr 3d and O 1s core levels for Pr₂O₃ are in good agreement with previous data to well confirm the chemical composition of Pr_2O_3 . Typical I_{DS} -V_{GS} and I_{DS} - V_{DS} of the integrated TiN gate and high- κ Pr₂O₃ TFTs with and without CF₄ plasma treatment are shown in Figs. 4, and 5; moreover, the key parameters were summarized in the table. 1. As CF₄ plasma is performed prior high- κ deposition, Vth decreased from 2.55 V to 2.28 V, S.S. decreased from 648 mV/dec to 575 mV/dec, I_{ON}/I_{OFF} increased from 0.92 x 10⁷ to1.34 x 10⁷, and trap density decreased from 5.23 x 10¹² cm⁻² to 2.89 x 10¹² cm⁻². This excellent performance is desirable for high-speed display IC's application resulted from the high gate capacitance density of 5.68 x 10^{-7} F/cm² from C-V measurements, which gives a small equivalent-oxide thickness (EOT) of 6.07 nm. Furthermore, the effective κ value of Pr_2O_3 is extracted to be 22.5 from the physical thickness of Pr_2O_3 films, equal to 35nm, as shown in Fig. 2. Additionally, hot-carrier stress was applied at V_D = $V_G = 4 V$ for 1000 s to examine the electrical reliability. The threshold voltage variations and the on-current degradation that resulted from the broken Si-Si and Si-H bonds during hot-carrier stress [11] are shown in Figs. 6, and 7. It was found that the CF₄ plasma treated TFTs have high immunity against the hot carrier stress as compared to control TFTs. Hence, the significant improvement in the electrical reliability can be attributed to the formation of stronger Si-F bonds in place of weaker Si-Si and Si-H bonds in the poly-Si.

4. Conclusion

A low cost, effective and process-compatible fluorine-incorporated technique is proposed. We have successfully combined TiN gate, Pr_2O_3 gate dielectric, and CF_4 plasma to fabricate high-performance poly-Si TFTs.

Acknowledgements:

The authors thank the apparatus support from National Nano Device Laboratories (NDL) and the financial support by the National Science Council (NSC) under contact no. NSC 95-2221-E-009-279.

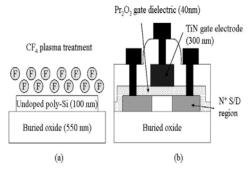


Fig. 1. Schematic diagram of the combined TiN gate and Pr₂O₃ gate TFT dielectric with CF₄ plasma treatment, (a) CF_4 plasma treatment on active region. Cross-sectional diagram of the proposed TFT structure.

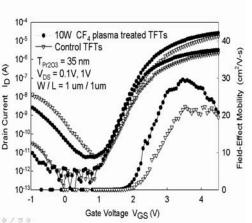


Fig. 4. Comparison of $I_D - V_G$ characteristics for control TFTs and CF_4 plasma treated TFTs (W/L = 1 $\mu m / 1 \mu m$).

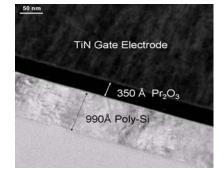


Fig. 2. Cross-sectional TEM image of the proposed high-k Pr2O3 gate dielectric TFT structure.

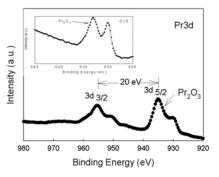
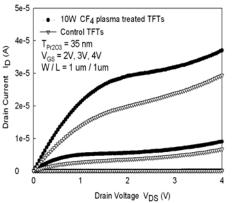



Fig. 3. Pr 3d photoelectron spectrum for Pr₂O₃. The inset also shows the O 1s photoelectron Spectrum which clearly indicates the presence of Pr₂O₃.

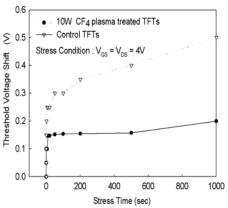


Fig. 5. Comparison of $I_D - V_D$ characteristics for control TFTs and CF4 plasma treated TFTs (W/L = 1 μ m / 1 μm).

Fig. 6. Threshold voltage variation versus stress time for the control and CF₄ plasma treated TFTs.

Table 1. Key device characteristics for the CF₄ plasma treated TFTs and control TFTs

Control TFT	CF ₄ plasma treated TFT
2.55	2.28
648	575
22.33	29.57
5.23	2.89
0.92	1.34
	TFT 2.55 648 22.33 5.23

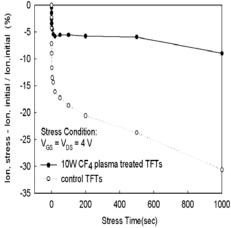


Fig. 7. On-current degradation versus stress time for the control and CF4 plasma treated TFTs.

References:

- [1] T. Nishibe, in Proc. Mater. Res. Soc. Symp. (2001) 685E.
- [2] B. D. Choi, H.-S. Jang, O.-K. Kwon, H.-G. Kim, and M. J. Soh, IEEE Trans. Consum. Electron. 100 (2000) 21.
- Chia-Pin Lin, Bing-Yue Tsui, Ming-Jui Yang, [3] Ruei-Hao Huang, and Chao-Hsin Chien, IEEE
- Electron Device Lett. 27 (2006).
 [4] B. F. Hung, K. C. Chiang, C. C. Huang, Albert Chin, and S. P. McAlister, IEEE Electron Device Lett. 26 (2005).
- [5] Dim-Lee Kwong, in Proceedings of 11th IPFA, IEEE, Taiwan, invited paper (2004) 16 [6] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel,
- and P. Zaumseil, in IEDM Tech. Dig. (2000) 653. I. W. Wu, A. G. Lewis, T. Y. Huang, and A. Chiang, IEEE Electron Device Lett. 10 (1993) [7] 2061.
- [9] H. N. Chern, C. L. Lee, and T. F. Lei, IEEE Trans. Electron Devices, 41 (1994) 698.
- [10] S. Maegawa, T. Ipposhi, S. Maeda, H. Nishimura, Ichiki, M. Ashida, O. Tanina, Y. Inoue, T. shimura, and N. Tsubouchi, IEEE Trans. Т Nishimura, and N. Tsubouchi, Electron Devices, 42 (1995) 1106.
- [11] S. Banerjee, R. Sundaresan, H. Shichijo, and S. Malhi, IEEE Trans. Electron Devices 35 (1988) 152.