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1. Introduction 

Lipid bilayer membranes supported on solid substrates 
retain the dynamic properties of cell membranes such as 
lateral fluidity and are regarded as a good structural motif 
for cell membranes. Recently such supported lipid bilayers 
have attracted a lot of attention in the field of biocompati-
ble coating and biosensing. Lipid bilayers are natural hosts 
for transmembrane proteins and good electrical insulators. 
Hence, supported lipid bilayers are potentially of great in-
terest as bioelectronics platforms. 

Supported lipid bilayers are typically prepared by one 
of two methods: vesicle fusion and the Langmuir-Blodgett 
technique. Various dynamic properties of lipid bilayers 
have been investigated using these methods. In addition to 
these studies, work has been undertaken related to 
self-spreading, which is also an interesting dynamic char-
acteristic of lipid bilayers [1-3]. Recently, the 
self-spreading behavior of supported lipid bilayers on pat-
terned surfaces has been attracting considerable interest 
[4-6]. 

In this study, we investigated the way in which a 
sub-100-nm scale nanogap affects the self-spreading of a 
lipid bilayer. For this purpose, we designed and fabricated 
patterned structures with a nanogap in a microchannel. Us-
ing these devices, we observed the self-spreading behavior 
of lipid bilayers passing through a nanogap. 
 
2. Experimental 
   Figure 1 shows the device structures used in this study. 
Nanostructures forming nanogaps were fabricated by elec-
tron beam lithography and the liftoff technique using Au / 
Ti (30 nm / 5 nm) on a silicon wafer with a 300-nm SiO2 
layer. The gap distances were 15-100 nm. Microchannels 
that were either 5 or 10 μm wide and that had wells at both 
ends were fabricated on these nanogap structures by using a 
conventional photolithography technique with an organic 
photoresist. 
   A chloroform solution of dye-conjugated lipid (fluo-
rescein-DHPE) was mixed with L-α-Phosphatidylcholine 
(L-α-PC) to prepare a solution of L-α-PC containing 5 
mol% of fluorescein-DHPE. The chloroform was evapo-
rated with a nitrogen gas stream and the residue was dried 
in vacuo overnight to yield a sticky solid. A small amount 
of the solid was attached to the tip of a glass capillary and 
transferred inside the well. The self-spreading of the lipid 
bilayer was initiated by immersing the device in a buffer 
solution (100 mM NaCl + 10 mM Tris-HCl (pH = 7.6)). 
   An Olympus BX51-FV300 confocal laser scanning 

microscope with a 488 nm laser for excitation was used for 
obtaining fluorescent images. All the observations were 
performed in a buffer solution at room temperature. 
 
3. Results and Discussion 
   A single lipid bilayer develops from a lipid source by 
self-assembly. When a self-spreading lipid bilayer is intro-
duced into the microchannel, its front edge will eventually 
reach the nanogap. Figure 2 shows the typical time evolu-
tion of a self-spreading lipid bilayer before and after it 
passes through a nanogap, where t = t0 is the time at which 
the advancing lipid bilayer reaches the nanogap. A lipid 
bilayer forms a semicircular structure when passing through 
a nanogap. It is confirmed that the lipid bilayer does not 
develop on the photoresist and gold patterns but only on the 
hydrophilic SiO2 surface. It is clear that a lipid bilayer will 
self-spread through a nanogap even when its width is less 
than 100 nm.  

To provide a more quantitative understanding of the 
self-spreading behavior through a nanogap, Figure 3 shows 
a double logarithmic plot of the velocity of the advancing 
lipid bilayer as a function of time. Throughout the meas-
urement, the observed velocities were well fitted by a line 
with a slope of -1/2, which agrees well with a previous re-
port [1]. Although this fact is surprising, it should be men-
tioned that there is no significant difference in the front 
edge velocity before and after the nanogap, and all the ex-
periments have similar results under the present conditions. 
   The time evolution of the fluorescence intensity profile 
as a function of distance is shown in Figure 4, where the 
position at the nanogap is set at 0. A noteworthy feature is 
that the fluorescence intensity decreases discontinuously in 
the vicinity of the nanogap. The rate of this decrease is 
about 10%. This result implies that the dye-conjugated lipid 
experiences interference when it passes through a 
sub-100-nm nanogap. This phenomenon was also observed 
using other devices. However, it is difficult to find a direct 
correlation between the rate of decrease and the nanogap 
size as it was about 10% for each sample in this study. 
 
4. Conclusions 
   We investigated the self-spreading of a lipid bilayer 
using devices incorporating a fabricated microchannel and 
a single nanogap. We confirmed that the self-spreading 
lipid bilayers passed through a sub-100-nm gap. On the 
other hand, the nanogap affects the fluorescence intensity 
of the self-spreading lipid bilayers. This result indicates that 
dye-conjugated lipid molecules experience interference as 
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they pass through a nanogap despite the dye molecules be-
ing smaller than the nanogap. It should be mentioned that 
the fabricated device used in this study have a single 
nanogap connected to metal pads, which make it possible to 
perform electrical measurements such as molecular trap-
ping for further applications. 
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Figure 1. (a) Schematic drawing of the device. The nanogap 
structure is made of gold. The microchannel and wells are 
formed on this structure by using a photoresist. At the be-
ginning of the experiments, a lipid source is mounted inside 
the well. (b) Magnified view of the device around nanogap. 
(c) SEM image of a 15 nm nanogap. 
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Figure 2. Time evolution of a self-spreading lipid bilayer on 
the device before and after passing through a nanogap. The 
gray areas are the fluorescence from fluorescein-DHPE. 
The lipid bilayer grows from left to right along the micro-
channel. The time at which the advancing lipid bilayer 
reaches the nanogap is set at t = t0. 
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Figure 3. Double logarithmic plot of the velocity of the 
advancing lipid bilayer as a function of time throughout the 
measurement. At about log(t) = 3.7, the front edge of the 
lipid bilayer passes through the nanogap. The dotted line 
has a slope of -1/2. 
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Figure 4. Time evolution of the fluorescence intensity pro-
file as a function of distance. The position at a nanogap is 
set at 0. 
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