Accurate Extraction of Mobility, Effective Channel Length, and Source/Drain Resistance in 60 nm MOSFETs

Junsoo Kim, Jaehong Lee, Yeonam Yun, Byung-Gook Park, Jong Duk Lee, and Hyungcheol Shin

Nano Systems Institutes, and School of EE, Seoul National University, San 56-1 Shinlim-dong, Kwanak-ku, Seoul, Korea

Abstract

An improved channel resistance method is proposed to extract gate bias dependent source and drain series resistance (R_{SD}), effective channel length ($L_{eff} = L_{mask}$ - ΔL), and mobility. A nonscaling of the total resistance $R_{TOT} = V_{DS}/I_{DS}$ of short channel device is observed because of mobility degradation of the short channel MOSFETs. The proposed method considers the variation of the effective mobility as a function of channel length.

1. Introduction

The effective mobility (μ_{eff}) is a key parameter that characterizes the transport in MOS transistors. Various improvements of the technique have been proposed to extend its applicability to ultrasmall MOSFETs with very thin oxides featuring significant gate leakage [1] or to short channel devices where overlap capacitances perturb the measurements [2]. In this paper, we measured the gate-channel intrinsic capacitance to get the actual inversion charge [3]. In the above method, the effective channel length and source and drain series resistance are critical parameters. Many methods of extracting R_{SD} and L_{eff} from DC have been reported [4]-[5]. However, these methods do not consider the variance of μ_{eff} with gate length which introduces errors due to the halo (or pocket) implants in the fabrication process. The short channel MOSFET features a degraded effective mobility compared to the long channel reference device. The typical behavior of R_{TOT} as a function of L_{mask} is shown in Fig. 1. Consequently, the negative value of ΔL or no intercept point is observed. In this paper, we propose an iteration method to extract R_{SD} and L_{eff} as a function of gate-source bias and this method was applied to 60 nm channel length devices.

2. Experimental Results and Discussions

S parameters were measured to extract gate-to-channel capacitance (C_{gc}) . The total measured C_{gc} is the sum of the parasitic C_p (C_{ov} , C_{if} , and C_{of}) and the intrinsic channel capacitance (C_{gci}) (see insert of Fig.2). Fig. 2 shows typical $C_{gc}(V_{gs},L)$ characteristics as obtained on Si nMOSFETs of various gate lengths. Because of the dependency of gate voltage of C_{do} in short channel device, the $C_{gc}(V_{gs},L)$ curves shown in Fig. 2 correspond therefore to

$$\begin{split} C_{gc}(V_{gs},L) = & (C_{of},C_{do})_{at\,accumulatin} + C_{if}(V_{gs}) + C_{do}(V_{gs}) & \cdots \varphi_{s} < \varphi_{B} \\ C_{gc}(V_{gs},L) = & (C_{of},C_{do})_{at\,accumulatin} + C_{if}(V_{gs}) + C_{do}(V_{gs}) + C_{gci}(V_{gs},L) \cdots \varphi_{B} < \varphi_{s} < 2\varphi_{B} \\ C_{gc}(V_{gs},L) = & (C_{of},C_{do})_{at\,accumulatin} + C_{do}(V_{gs}) + C_{gci}(V_{gs},L) & \cdots 2\varphi_{B} < \varphi_{s} \end{split}$$

The C_p and C_{gci} are extracted from $C_{gc}(V_{gs}L)$ as in Fig. 3. The inversion charge Q_i was obtained by integration of C_{gci} as a function of V_{gs} [3]. Fig. 4 (a) shows the inversion charge Q_i versus ($V_{gs} - V_{th}$) at $V_{ds} = 0$ for different channel lengths. Fig. 4 (b) shows the effective mobility which is deduced from

$$\mu_{eff} = \frac{(L_{mask} - \Delta L)^2 I_{ds}}{Q_i [V_{ds} - I_{ds} (R_s + R_d)]}$$
[1]

where we assume that the ΔL and R_{SD} are 20nm and 1.5 Ω respectively which is initial guess. The strong degradation of extracted μ_{eff} for different channel length is observed. This mobility variation in the short channel devices was compensated in the R_{TOT} measurement data to extract accurate ΔL and R_{SD} . Fig. 5 shows the L-array method before mobility compensation and after mobility compensation. We re-extract the effective mobility using second ΔL and R_{SD} . Fig. 6 shows convergence to the common intercept point for different initial guess points. Fig. 7 shows the extracted R_{SD} and ΔL for different V_{gs} - V_{th} using the proposed method. This method takes into account the bias dependence of R_{SD} and ΔL . Fig. 8 shows the effective mobility versus effective electric field ($E_{eff} = (V_{gs}+V_{th})/6t_{ox}$).

3. Conclusion

We proposed an improved L-array method in 60 nm nMOSFETs, which includes the variance of effective mobility with gate length. Accurate values of ΔL and R_{SD} were extracted in 60 nm MOSFETs. This method proves very useful for transport modeling in ultra-short channel devices.

Acknowledgements

This work was supported by Samsung Electrics Ltd. and NSI-NCRC. **References**

- S. Takagi and M. Takayanagi, Jpn. J. Appl. Phys., vol. 41, pp. 2348-2352, 2002.
- [2] K. Terada and S. Okamoto, SSE., vol. 47, pp. 1457-1459, 2003.
- [3] Y. Yoon and H. Shin, Meeting on Si. I.C in RF symp., pp.72-75, 2007.
- [4] D. Esseni and B. Ricco, EDL, vol. 19, no. 4, pp. 131-133, 1998

Fig. 1. R_{TOT} at the same gate overdrive. Dashed lines represent the linear regression of $R_{\text{TOT}}.$

Fig. 2. Gate to channel capacitance obtained from nMOSFETs.

Fig. 3. The $C_{p}\left(C_{ov},C_{if}\text{, and }C_{outf}\right)$ and $C_{gci}(V_{gs},L)$ are extracted from C_{gc}

Fig. 4. (a) Inversion charge in the channel at Vds = 0 V. (B) Extracted effective mobility when the ΔL and R_{SD} are 20 nm and 1.5 Ω , respectively.

Fig. 5. The L-array method before mobility compensation and after mobility compensation.

Fig. 6. The common intercept point of several lines, each for a different $V_{gs}\text{-}V_{th}$ during iteration above method with various initial ΔL and R_{sd} value.

Fig. 7. The extracted R_{SD} and ΔL for different $V_{gs}\text{-}V_{th}$ using the proposed method.

Fig. 8. The effective mobility versus effective electric field.